- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
7. Физика сплошных сред - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Интегрируя по времени, получаем
Заметьте, что 1А равно объему тора, поэтому плотность энергии и=U/(Объем магнитного материала), как мы показали, равна
Здесь выявляется одно интересное обстоятельство. Когда в обмотке течет переменный ток, то В в железе «ходит» по петле гистерезиса. А поскольку В — неоднозначная функция Я,
то интеграл ∫HdB по замкнутому циклу равен не нулю, а площади, заключенной внутри петли гистерезиса. Таким образом, за каждый цикл источник тока отдает некоторую энергию, равную площади петли гистерезиса. Это есть потери из электромагнитного цикла; энергия уходит на нагревание железа. Такие потери называются гистерезисными. Чтобы они были поменьше, петлю гистерезиса желательно сделать как можно уже. Один из способов уменьшить площадь петли — это максимально уменьшить поле в каждом цикле. Для меньших максимальных полей мы получаем гистерезисную кривую, подобную изображенной на фиг. 36.9.
Фиг. 36.9. Петля гистерезиса, не достигающая насыщения.
Кроме того, применяются особые материалы с очень узкой петлей. Чтобы получить это свойство, специально создано так называемое трансформаторное железо, которое представляет сплав железа с небольшой примесью кремния.
Когда петля гистерезиса очень мала, соотношение В и Н приближенно можно представлять в виде линейного уравнения. Обычно пишут
В=mН. (36.23)
Здесь постоянная m вовсе не магнитный момент, с которым мы встречались раньше. Она называется магнитной проницаемостью. (Иногда ее называют также относительной проницаемостью.) Типичная проницаемость обычных сортов железа равна нескольким тысячам. Однако существуют специальные сплавы, типа так называемого «супермаллоя», проницаемость которых может быть порядка миллиона.
Если в уравнении (36.21) мы воспользуемся приближением В=mН, то энергию индуктивности, имеющей форму тора, можно записать как
так что плотность энергии приближенно равна
Теперь мы можем выражение для энергии (36.24) положить равным энергии индуктивности LI2/2 и найти L. Получается
А воспользовавшись выражением (36.20) для отношения H/I, находим
Таким образом, индуктивность пропорциональна m. Если вам нужна индуктивность для таких устройств, как звуковые усилители, то желательно иметь материал, у которого связь между В и Н достаточно линейна. [Вы, должно быть, помните, что в гл. 50 (вып. 4) мы говорили о генерации гармоник в нелинейных системах.] Для таких задач уравнение (36.23) будет очень хорошим приближением. С другой стороны, если нужно генерировать гармоники, то используют индуктивности, ведущие себя в высшей степени нелинейно. При этом вы должны пользоваться сложной кривой Н—В и применять при вычислениях графические или численные методы.
В обычных «трансформаторах» на одном и том же торе, или сердечнике, из магнитного материала намотаны две катушки. (В больших трансформаторах сердечник для удобства делается прямоугольным.) При этом изменение тока в «первичной» обмотке вызывает изменение поля в сердечнике, которое индуцируется э.д.с. во «вторичной» обмотке. Поскольку поток через каждый виток обеих обмоток один и тот же, то величина отношения э.д.с. в этих двух обмотках такая же, как отношение числа витков в каждой из них. Напряжение, приложенное к первичной обмотке, преобразуется во вторичной в напряжение другой величины. А поскольку для создания требуемых изменений магнитного поля необходим определенный полный ток, то алгебраическая сумма токов в двух обмотках должна оставаться постоянной и равной требуемому «намагничивающему» току. При изменении напряжения изменяется и сила тока в обмотках, т. е. вместе с преобразованием напряжения происходит и преобразование тока.
§ 5. Электромагниты
Поговорим теперь о практической стороне дела, которая немного более сложна. Предположим, что мы имеем электромагнит стандартной формы, изображенный на фиг. 36.10.
Фиг. 36.10. Электромагнит.
Он состоит из С-образного железного ярма, на которое намотано много витков провода. Чему равно магнитное поле В в зазоре?
Если ширина зазора мала по сравнению со всеми другими размерами, то в качестве первого приближения мы можем считать, что линии В образуют замкнутые кривые так же, как это происходит и в обычном торе. Они выглядят примерно так, как показано на фиг. 36.11,а.
Фиг. 36.11. Поперечное сечение электромагнита.
Они стремятся вылезть из зазора, но если он узок, то эффект этот очень мал. Предположение о постоянстве потока В через любое поперечное сечение ярма будет довольно хорошим приближением. Если поперечное сечение ярма меняется равномерно и если мы пренебрежем любыми краевыми эффектами на зазоре или на углах, то можно говорить, что по всей окружности ярма В однородно.
Поле В в зазоре будет по величине тем же самым. Это следует из уравнений (36.16). Представьте себе замкнутую поверхность S (см. фиг. 36.11,б), одна грань которой находится в зазоре, а другая — в железе. Полный поток поля В через эту поверхность должен быть равен нулю. Обозначая через В1 величину поля в зазоре, а через B2 — величину поля в железе, мы видим, что
B1A1-В2А2=0,
а поскольку А1=А2, то отсюда следует, что В1=В2.
Посмотрим теперь на Н. Мы снова можем воспользоваться уравнением (36.19), взяв криволинейный интеграл по контуру Г (см. фиг. 36.11,6). Как и прежде, правая часть равна NI— произведению числа витков на ток. Однако теперь Н в железе и в воздухе будет различным. Обозначая через Н2поле в железе, а через l2 — Длину пути по окружности ярма, мы видим, что эта часть кривой дает вклад в интеграл H2l2. Если же поле в зазоре равно Н1, а ширина его l1, то вклад зазора оказывается равным H1l1. Таким образом, получаем
Но это еще не все. Нам известно еще, что намагниченность в воздушной щели пренебрежимо мала, так что B1=H1. А так как B1=B2, то уравнение (36.26) принимает вид
Остаются еще два неизвестных. Чтобы найти В2и H2, необходимо еще одно соотношение, которое связывает В с H в железе.
Если можно приближенно считать, что B2=mH2, то уравнение разрешается алгебраически. Рассмотрим более общий случай, для которого кривая намагничивания железа имеет вид, изображенный на фиг. 36.8. Единственное, что нам нужно,— это найти совместное решение этого функционального соотношения с уравнением (36.27). Его можно найти, строя зависимость (36.27) на одном графике с кривой намагничивания, как это сделано на фиг. 36.12. Точки, где эти кривые пересекутся, и будут нашими решениями.
Для данного тока I уравнение (36.27) описывается прямой линией, обозначенной I>0 на фиг. 36.12. Эта линия пересекает ось Н (B2=0) в точке H2=NI/e0c2l2и имеет наклон -l2/l1 Различные величины токов приводят просто к горизонтальному сдвигу этой линии. Из фиг. 36.12 мы видим, что при данном токе существует несколько различных решений, зависящих от того, каким образом вы получили их.
Фиг. 36.12. Определение поля в электромагните.
Если вы только что построили магнит и включили ток /, то поле B2 (которое равно B1) будет иметь величину, определяемую точкой а. Если вы сначала увеличили ток до очень большой величины, а затем понизили до I, то значение поля будет определяться точкой b. А если, увеличивая ток от большого отрицательного значения, вы дошли до /, то поле определяется точкой с. Поле в зазоре зависит от того, как вы поступали в прошлом.

