- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
3. Излучение. Волны. Кванты - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
§ 4. Применения принципа Ферма
Рассмотрим теперь некоторые интересные следствия принципа наименьшего времени. Первое из них — принцип обратимости. Мы уже нашли путь из A в В,требующий наименьшего времени; пойдем теперь в обратном направлении (считая, что скорость света не зависит от направления). Наименьшему времени отвечает та же траектория, и, следовательно, если свет распространяется по некоторому пути в одном направлении, он будет двигаться по этому пути и в обратном направлении.
Другой интересный пример! На пути света под некоторым углом поставлена четырехгранная стеклянная призма с параллельными гранями. Свет проходит из точки А в В и, встретив на своем пути призму (фиг. 26.6), отклоняется, причем длительность пути в призме уменьшается за счет изменения наклона траектории, а путь в воздухе немного удлиняется. Участки траектории вне призмы оказываются параллельными друг другу, потому что углы входа и выхода из призмы одинаковы.
Третье интересное явление состоит в том, что когда мы смотрим на заходящее солнце, то оно на самом деле находится уже ниже линии горизонта! Нам кажется, что солнце еще над горизонтом, а оно фактически уже зашло (фиг. 26.7). Дело здесь в следующем. Земная атмосфера вверху разрежена, а в нижних слоях более плотная. Свет распространяется в воздухе медленнее, чем в вакууме, и поэтому солнечные лучи достигнут какой-то точки за горизонтом быстрее, если будут двигаться не по прямой линии, а по траектории с более крутым наклоном в плотных слоях атмосферы, сокращая таким образом свой путь в этих слоях.
Еще пример того же рода — мираж, который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят на дороге «воду», а когда подъезжают туда, то кругом оказывается все сухо, как в пустыне! Сущность явления в следующем. То, что мы видим в этом случае, это «отраженный» дорогой свет. На фиг. 26.8 показано, как падающий на дорогу луч света попадает к нам в глаз. Почему? Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным, а потому и скорость света в нем больше, чем в холодном.
Фиг.26.6. Луч света, выходящий из прозрачной пластины, параллелен падающему лучу.
Фиг. 26.7. У горизонта Солнце кажется на 1/2 градуса выше, чем на самом деле.
Другими словами, свет быстрее проходит в теплых слоях, чем в холодных. Поэтому свет проходит не по прямой, а идет по траектории с наименьшим временем, заворачивая для этого в теплые слои воздуха, чтобы сократить время. Таким образом, свет идет по кривой.
И еще один пример. Представим себе такую ситуацию, когда весь свет, испускаемый в точке Р, собирается обратно в другую точку Р' (фиг. 26.9). Это означает, конечно, что свет может попасть из точки Р в Р' по прямой линии. Это правильно. Но как устроить так, чтобы свет, идущий от Р к Q, тоже попал в Р'? Мы хотим собрать весь свет снова в одной точке, которую называют фокусом. Как это сделать? Поскольку свет всегда выбирает путь с наименьшим временем, то наверняка он не пойдет по другим предложенным нами путям. Единственный способ сделать целый ряд близлежащих траекторий приемлемыми для света — это устроить так, чтобы для всех время прохождения было точно одинаковым! В противном случае свет пойдет по траектории, требующей минимального времени. Поэтому задача построения фокусирующей системы сводится просто к созданию устройства, в котором свет тратит на всех путях одинаковое время!
Такое устройство создать просто. Возьмем кусок стекла, в котором свет движется медленнее, чем в воздухе (фиг. 26.10). Проследим путь луча света, проходящего в воздухе по линии PQP'. Этот путь длиннее, чем прямо из Р в Р', и наверняка занимает больше времени. Но если взять кусок стекла нужной толщины (позже мы вычислим, какой именно), то путь в нем скомпенсирует добавочное время, затрачиваемое при отклонении луча на траектории PQP'. При этих условиях можно устроить так, чтобы время, затрачиваемое светом на пути по прямой, совпадало со временем, затрачиваемым на пути PQP'. Точно так же, если взять частично отклоненный луч PRR'P' (более короткий, чем PQP'), то придется скомпенсировать уже не так много времени, как для прямолинейной траектории, но некоторую долю времени все же скомпенсировать придется.
Фиг. 26.8. Мираж.
Фиг, 26.9. Оптический «черный ящик».
В результате мы приходим к форме куска стекла, изображенной на фиг. 26.10. При такой форме весь свет из точки Р попадет в Р'. Всё это нам известно уже давно, и называется такое устройство собирательной линзой. В следующей главе мы вычислим, какой должна быть форма линзы, чтобы получить идеальную фокусировку.
Наконец, последний пример. Предположим, что нам нужно так поставить зеркало, чтобы свет из точки Р всегда приходил в Р' (фиг. 26.11). На любом пути свет должен отразиться от зеркала, и время для всех путей должно быть одинаковым. В данном случае свет проходит только в воздухе, так что время прохождения пропорционально длине пути. Поэтому требование равенства времен сводится к требованию равенства полных длин путей. Следовательно, сумма расстояний r1 и r2 должна оставаться постоянной. Эллипс обладает как раз тем свойством, что сумма расстояний любой точки на его кривой от двух заданных точек постоянна; поэтому свет, отразившись от зеркала, имеющего такую форму, наверняка попадет из одного фокуса в другой.
Этот принцип фокусировки служит для наблюдения света звезд. При постройке большого 200-дюймового телескопа в обсерватории Паломар использовалась следующая идея. Вообразите себе звезду, удаленную от нас на миллиарды километров; мы хотим собрать весь испускаемый ею свет в фокус. Конечно, мы не можем начертить всю траекторию лучей до звезды, тем не менее мы должны проверить, насколько времена на различных траекториях равны. Мы, конечно, знаем, что если множество различных лучей достигло плоскости КК', перпендикулярной направлению лучей, то времена для всех этих лучей будут равны (фиг. 26.12). Далее лучи должны отразиться от зеркала и за равные промежутки времени попасть в фокус Р'.
Фиг. 26 10. Фокусирующая оптическая система.
Фиг. 26.11. Эллиптическое зеркало.
Это означает, что мы должны найти такую кривую, для которой сумма расстояний ХХ'--Х'Р' будет постоянна, независимо от выбора точки X. Легче всего это сделать, продолжив отрезок XX' до плоскости LL'. Потребуем теперь, чтобы выполнялись соотношения А'А"=А'Р',В'В"=В'Р', С'С"=С'Р' и т. д.; в этом случае мы получаем нужную нам кривую, потому что сумма длин А 'А+А 'Р' =АА'+А 'А'' будет постоянной для всех точек кривой. Значит, наша кривая есть геометрическое место всех точек, равноудаленных от линии и некоторой заданной точки. Такая кривая называется параболой; вот зеркало телескопа и было изготовлено именно в форме параболы.
Приведенные примеры в общих чертах иллюстрируют принцип устройства оптических систем. Точные кривые можно рассчитать, используя правило равенства времен на всех путях, ведущих в точку фокуса, и требуя, чтобы время прохождения на всех соседних путях было большим.
В следующей главе мы еще вернемся к фокусирующим оптическим системам, а теперь обсудим дальнейшее развитие теории. Когда предлагается новый физический принцип, такой, как принцип наименьшего времени, то нашей первой естественной реакцией могли бы быть слова: «Все это очень хорошо, восхитительно, но вопрос заключается в том, улучшает ли это вообще наше понимание физики?». На это можно ответить: «Да. Посмотрите сколько новых фактов мы теперь поняли!» А кто-то возразит: «Ну, в зеркалах я и так разбираюсь. Мне нужна такая кривая, чтобы каждая касательная к ней плоскость образовывала равные углы с двумя лучами света. Я могу рассчитать и линзу, потому что каждый падающий на нее луч отклоняется на угол, даваемый законом Снелла». Здесь очевидным образом содержание принципа наименьшего действия совпадает с законом равенства углов при отражении и пропорциональности синусов углов при преломлении. Тогда, может быть, это философский вопрос, а может быть, вопрос просто в том, какой путь красивее? Можно привести аргументы в пользу обеих точек зрения.
Однако критерий важности всякого принципа состоит в том, что он предсказывает нечто новое.
Легко показать, что принцип Ферма предсказывает ряд новых фактов. Прежде всего предположим, что имеются три среды — стекло, вода и воздух и мы наблюдаем явление преломления и измеряем показатель n для перехода из одной среды в другую.

