- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
3. Излучение. Волны. Кванты - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
(32.18)
А теперь давайте условимся: полное количество энергии, рассеиваемое атомом, мы приравняем энергии падающего пучка, проходящей через некоторую площадь; указав величину площади, мы тем самым определяем рассеиваемую энергию. В такой форме ответ не зависит от интенсивности падающего пучка; он выражает отношение рассеиваемой энергии к энергии, падающей на 1 м2. Другими словами,
Смысл этой площади заключается в том, что, если бы вся попадающая на нее энергия отбрасывалась в сторону, она рассеивала бы столько энергии, сколько рассеивает атом.
Эта площадь называется эффективным сечением рассеяния. Понятие эффективного сечения используется всегда, когда эффект пропорционален интенсивности падающего пучка. В таких случаях количественный выход эффекта задается площадью эффективной области, выхватывающей из пучка такую часть, чтобы она равнялась выходу. Это ни в коем случае не означает, что наш осциллятор на самом деле занимает подобную площадь. Если бы свободный электрон просто качался взад и вперед, ему бы не соответствовала никакая площадь. Это лишь способ выражения результата через определенную величину; мы указываем площадь, на которую должен упасть пучок, чтобы получилась известная энергия рассеяния. Итак, в нашем случае
(32.19)
(s — рассеяние).
Рассмотрим несколько примеров. Прежде всего, когда собственная частота очень мала или электрон вообще свободен, что соответствует w0= 0, частота w выпадает и сечение s становится константой. В этом пределе сечение носит название томпсоновского сечения рассеяния. Оно равно площади квадратика со стороной около 10-15 м, т. е. площади 10-30 м2, а это очень мало!
С другой стороны, при рассеянии света в воздухе собственные частоты осцилляторов, как мы уже говорили, больше частот обычного света. Отсюда следует, что величиной w2 в знаменателе можно пренебречь и сечение оказывается пропорциональным четвертой степени частоты. Значит, свет с частотой, в два раза большей, рассеивается в шестнадцать раз интенсивнее, а это уже вполне ощутимая разница. Таким образом, голубой свет, частота которого примерно вдвое выше частоты света у красного конца спектра, рассеивается значительно интенсивнее, чем красный свет. И, взглянув на небо, мы видим только изумительную синеву!
Стоит сказать еще несколько слов по поводу полученных результатов. Ответьте, во-первых, почему мы видим облака? Откуда они берутся? Всем известно, что возникают они за счет конденсации водяных паров. Но водяные пары, конечно, находились в атмосфере еще до конденсации. Почему же мы их не видели? А вот после конденсации их прекрасно видно. Не были видны — и вдруг появились. Как видите, тайна происхождения облаков — это совсем не детский вопрос, вроде «Папа, откуда взялась вода?», и ее нужно объяснить.
Мы только что говорили, что каждый атом рассеивает свет, и, естественно, водяной пар тоже должен рассеивать свет. Загадка состоит в том, почему вода, конденсированная в облаках, рассеивает свет сильнее в такое огромное число раз?
Давайте посмотрим, что получится, если вместо одного атома взять скопление атомов, скажем два атома, расположенных очень близко друг к другу по сравнению с длиной волны. Вспомним, что размеры атомов порядка 1 Е, а длина волны света порядка 5000 Е, так что несколько атомов вполне могут образовать сгусток, где расстояние между ними будет много меньше длины волны. Под действием электрического поля оба атома будут колебаться совместно, как целое. Рассеиваемое электрическое поле окажется равным сумме двух полей с одинаковой фазой, т. е. удвоенной амплитуде одного атома, а энергия увеличится в четыре, а не в два раза по сравнению с энергией излучения от отдельного атома! Таким образом, сгустки атомов излучают или рассеивают больше энергии, чем столько же атомов по отдельности. Наше старое утверждение, что фазы двух атомов никак не связаны, основывалось на предположении о большой разности фаз двух атомов, что справедливо только когда расстояние между ними порядка нескольких длин волн или, когда они движутся. Если же атомы находятся совсем рядом, они излучают обязательно с одной фазой, и возникает усиливающая интерференция, что приводит к увеличению рассеяния.
Пусть в сгустке, крошечной капельке воды, содержится N атомов; тогда под действием электрического поля они будут двигаться, как и раньше, все вместе (влияние атомов друг на друга для нас несущественно, мы хотим только выяснить суть дела). Амплитуда рассеяния каждого атома одна и та же; следовательно, поле рассеянной волны оказывается в N раз больше.
Интенсивность рассеиваемого света увеличивается в N2 раз. Если бы атомы находились далеко друг от друга, мы получили бы увеличение в N раз по сравнению со случаем отдельного атома, а здесь возникает N2 раз! Иначе говоря, рассеяние капельками воды (по N молекул в каждой) в N раз больше рассеяния тех же атомов по отдельности. Таким образом, чем больше вода конденсируется, тем больше рассеяние. Может ли рассеяние расти до бесконечности? Нет, конечно! На каком же этапе наши рассуждения станут неверными? Ответ: когда водяная капля увеличится настолько, что размеры ее окажутся порядка длины волны, колебания атомов будут происходить с разными фазами, потому что расстояние между ними станет слишком большим. Таким образом, с увеличением размера капель рассеяние растет до тех пор, пока капли не станут порядка длины волны, а затем с ростом капель рассеяние увеличивается гораздо медленнее. Кроме того, голубой свет в рассеянной волне начинает исчезать, потому что для коротких волн предел роста рассеяния наступает раньше (у менее крупных капель), чем для длинных волн. Хотя каждый атом рассеивает короткие волны сильнее, чем длинные, капли с размерами больше длины волны интенсивнее рассеивают свет вблизи красного конца спектра, и с ростом капель цвет рассеянного излучения меняется с голубого на красный (становится более красным).
Это явление можно наглядно продемонстрировать. Нужно взять очень маленькие частички вещества, которые затем постепенно будут расти. Для этого воспользуемся раствором гипосульфита натрия в серной кислоте, в котором осаждаются крохотные зернышки серы. Когда сера начинает осаждаться, зернышки еще очень малы и рассеянный свет имеет синеватый оттенок. С ростом числа и величины частиц в осадке свет сначала становится более интенсивным, а затем приобретает беловатый оттенок. Кроме того, проходящие лучи теряют синюю составляющую. Именно поэтому закат бывает красным; солнечные лучи, прошедшие к нам через толщу атмосферы, успели рассеять голубой свет и приобрели оранжевую окраску.
Наконец, при рассеянии возникает еще одно важное явление, которое, по существу, относится к поляризации — теме следующей главы. Однако оно так интересно, что имеет смысл сказать о нем сейчас. Оказывается, что электрическое поле рассеянного света колеблется преимущественно в одном определенном направлении. Пусть электрическое поле в падающей волне колеблется в каком-то направлении, тогда осциллятор будет совершать свои вынужденные колебания в том же направлении. Если теперь мы будем смотреть под прямым углом к падающему лучу, то увидим поляризованный свет, т. е. свет, в котором электрическое поле колеблется только в одном направлении. Вообще говоря, атомы могут осциллировать в любом направлении, лежащем в плоскости, перпендикулярной падающему лучу, но, когда они движутся прямо к нам или от нас, мы их не видим. Таким образом, хотя электрическое поле в падающем луче осциллирует во всевозможных направлениях (в этом случае говорят о неполяризованном свете), свет, рассеивающийся под углом 90°, содержит колебания только в одном направлении (фиг. 32.3)!
Фиг. 32.3. Возникновение поляризации у рассеянного луча, направленного под прямым углом к падающему лучу.
Есть такое вещество, называемое поляроидом, через которое проходит только волна с электрическим полем, параллельным некоторой оси. С помощью поляроида можно заметить поляризацию и, в частности, показать, что свет, рассеянный нашим раствором гипосульфита, действительно сильно поляризован.
*Выпуск 2

