- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев
Шрифт:
Интервал:
Закладка:
Сначала возьмем конечный случай. Пусть у нас есть множество. Оно состоит (например) из трех чисел: 0, 1 и 2. Подмножество это какая-то компания, составленная из них. Какие могут быть компании? Во-первых, может быть компания, в которой нет ни одного числа. Ну, как говорят, пустое множество. «Никого в нём нет» называется компания. Но математики никак не могут без этого обойтись, они просто не могут. Без нуля и без пустого множества математика не живет. Что значит «На день рождения пришло пустое подмножество гостей»? Это означает, что вы накрыли стол, и никто не явился. Математик скажет: «Ко мне на день рождения пришло пустое множество гостей». Потом, возможно, пришел только господин 0. И сразу множество перестало быть пустым!
Продолжаем «придумывать “компании”. Так сказать, кампания по нахождению компаний (шутка). Возможно, в гости пришел не Господин 0, а Господин 1 или Господин 2. Вот вам уже целых четыре компании: одна пустая и три из одного «человека». Эти последние могут даже побеседовать… сами с собой («с умным человеком и поговорить приятно»).
∅ (пустое множество),
{0}, {1}, {2}.
Какие еще варианты?
{0, 1}, {0, 2}, {1, 2}.
Все варианты перечислили?
Еще могли прийти все. Итого — 8 разных компаний.
{0, 1, 2}.
Или такая задача. Вы начальник группы. И вы хотите кого-то наградить. Сколькими способами вы можете решить эту задачу? Вы можете наградить одного, можете не награждать никого. Можете наградить двух, можете всех трех. Сколько у вас способов решить эту задачу? У вас 8 вариантов, потому что 8 подмножеств.
Так вот, ни для какого (ни конечного, ни бесконечного) множества нельзя пересчитать подмножества, используя элементы исходного множества. Подмножеств гораздо больше, чем элементов. У нас элементов всего 3, а подмножеств оказалось 8. Не хватит. Если элементов было бы 5, то подмножеств будет 32 штуки. Для конечных понятно — не пересчитаешь. Я хочу сказать, что такого не может быть ни для каких вообще множеств. Это доказал Г. Кантор.
Смотрите. Как мы могли бы доказывать теорему о том, что множество и множество его подмножеств не одинаковы.
Рассмотрим множество натуральных чисел 1, 2, 3, 4… И множество всех подмножеств этого множества, например, все четные, или все делящиеся на 3, или все кубы чисел, начиная с тысячи, и т. д.
Используем доказательство от противного (но в несколько необычной обстановке). Предположим, что мы смогли пересчитать множество подмножеств. Подмножество четных чисел получило, скажем, номер 15. Подмножество нечетных получило номер 3. Подмножество «Все четные, начиная с десятки» получило номер 156. Числа, делящиеся на 3, как множество, получили номер 1376, отдельно взятое подмножество из чисел, которые между ста и тысячью лежат, получило номер 1000000 и т. д.
Допустим, мы пересчитали все подмножества. Приведем это допущение к противоречию.
Рассмотрим все натуральные числа, для которых «их» подмножество (то есть подмножество с таким номером) не содержит этого числа.
Скажем, четные числа получили номер 15, 15 — нечетное число, то есть, подмножество, ему соответствующее, его не содержит. Значит, 15 — это как раз нужное нам число.
А если, например, подмножество состоит из чисел {101,102, 103…., 200} и получило номер 195, оно нам не подходит, так как 195 лежит внутри своего подмножества. Значит, натуральное число 195 нам не подходит.
Далее Кантор сделал шаг к следующему этапу рассуждения. Он рассмотрел все такие числа, собрал их в кучу и обозвал это подмножеством В.
Подмножество В вполне конкретное — это все числа, которые сами не входят в подмножество с их номером. То есть 15 вошло в В, 195 — не вошло. И так далее. Этому подмножеству В тоже должен быть присвоен некий натуральный номер b. Это же подмножество. Но если каждому подмножеству присвоен номер (по нашему предположению), то такому подмножеству тоже присвоен номер. Вопрос: число b входит ли в подмножество В? С какой вероятностью вы встретите крокодила на улице (если вы не знаете вообще, что такое «крокодил»)?
Слушатели: 50 на 50.
А.С.: Да, правильно, девушки дорогие! Вот это вы правильно говорите. Либо встретите, либо не встретите. Правда? Значит, номер b либо принадлежит подмножеству В, либо не принадлежит. Сейчас я докажу, что не может быть ни того, ни другого. То есть сейчас я докажу, что вы не можете ни встретить крокодила, ни не встретить. Ни то, ни другое не может произойти. И это будет то самое противоречие, которое будет устанавливать тот факт, что соответствия между множеством и множеством его подмножеств не бывает. Потому что оно выведено, исходя из того, что мы смогли устроить такое соответствие.
Поехали. Я утверждаю, что «инвентарный» номер подмножества, которое состоит из таких натуральных чисел, что их собственное подмножество их не содержит, не может ни содержаться в В, ни не содержаться в В. Предположим, что номер b содержится в В. Это значит, что он не может входить в множество тех чисел, которые в своих множествах не содержатся.
Слушатель: И значит, он не содержится в множестве В.
А.С.: И значит, он не содержится в В. А теперь представьте себе, что он не содержится в В.
Слушатель: Но тогда он должен содержаться, потому что он элемент В по определению множества В.
А.С.: Да. Тогда он должен содержаться в В. То есть если он содержится, то он не содержится, а если он не содержится, то содержится. Теорема доказана методом «от противного», ибо мы пришли к чисто логическому противоречию.
Вот она, математическая логика. Добро пожаловать! Каждый 6-й логик, как говорят, сходит с ума. Это мне говорил мой учитель, он тоже математический логик, но не шестой.
Делаем дальнейший вывод — это множество подмножеств больше, чем само множество. (Подсказка: во множестве всех подмножеств находятся все одноэлементные подмножества.) Заманчивой является мысль, что это не только для подмножеств натурального ряда чисел справедливо, но и вообще для подмножеств ЛЮБОГО множества. Но понятие «любое множество» так вдохновило некоторых математиков, что в ход пошли совершенно ужасающие множества типа «множество всех мыслимых множеств». (Или, например, множество плохо совместимых слов «огород», «бузина», «Киев», «дядька» из известной поговорки.) И возникли крупные математические проблемы с такими множествами. Но теория Кантора выдержала это нашествие «безумных множеств». Просто пришлось внести необходимые уточнения в некоторые исходные понятия.
Вот еще один яркий образчик «безумных математических объектов». Рассмотрим некоторый шар. Например, футбольный мяч.

