- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев
Шрифт:
Интервал:
Закладка:
Давайте все-таки, чтобы вас убедить, пообрубаем эту дробь в разных местах. Смотрите. 1 — это ведь «1 разделить на 1». Если подставить в уравнение (4) m = n = 1, то что получится?
12 = 2 · 12 − 1
(то есть (4) выполняется).
Обрубаем дальше. Будет 3/2.
Подставляем: 9 = 2 · 4 + 1.
Обрубаем еще раз. Получаем 7/5. Подставляем.
49 = 2 · 25 − 1.
Вы видите, что теорема верна.
Гуманитарию уже не надо доказывать теорему, он уже «видит», что она верна. Но математику нужно ее доказать, нужно установить, что это действительно всегда будет так. Мало того, оказывается, что все такие обрубания дадут вам решения этого уравнения, и других решений в задаче нет. Вообще никаких.
Слушатель: Ну, или мы просто не нашли?
А.С.: Нет. Доказали, что больше не существует.
Ну, последний фокус-покус. Но берегитесь, он страшный. Знаете ли вы, что такое бином Ньютона? Это — правило, по которому раскладываются выражения, в которых вы много раз умножили одну скобку на себя. В школе проходят (а + b)(a + b) = а2 + 2аb + b2. Еще проходят: (а + b)(а + b)(а + b) = а3 + 3а2b + 3ab2 + b3. Но есть некая формула, которая верна всегда, для любого количества скобок. Считается, что ее придумал Ньютон, но на самом деле ее, скорее всего, знали и до него. Просто он ее огласил. Так вот, бином Ньютона тоже помогает искать решения уравнения m2 − 2n2 = ±1. Ниже мы снова за К обозначим корень из двух.
Возьму (1 + К)2 = 1 + 2К + 2 = 3 + 2К. Решением будет пара (m = 3, n = 2), и мы уже выше встречались с ним. Но, может, это случайно так совпало?
Возведение в куб вас должно уже убедить. Имеем:
(1 + К)3 = 1 + ЗК + 6 + 2К = 7 + 5К.
Не правда ли, это следующее решение нашего уравнения? Здесь m = 7, n = 5.
Возведем в четвертую степень. А это всё равно, что возвести два раза во вторую, один раз в нее мы уже возводили.
(1 + К)4 = (3 + 2К)2 = 9 + 12К + 8 = 17 + 12К.
Проверяем:
172 = 289,
122 = 144,
144 · 2 = 288.
Получается: 289 = 288 + 1.
Это работает!
До встречи на лекции 4.
Лекция 4
Всего вам взаимно-однозначного!
А.С.: На прошлой лекции я сказал кое-что про решение уравнения вида х2 − 2у2 = ±1. Тогда обозначения были другие. Но на то это и математика, что «хоть горшком назови». В этой лекции переменные, значения которых мы ищем, будут обозначаться «x» и «у». Теперь кое-что уточним. Можно взять вместо числа 2 любое натуральное число m и записать аналогичное уравнение: х2 − mу2 = ±1.
В принципе, почти ничего не изменится в общем ходе решения. Единственный вариант, при котором будут различия, это когда m представляется в виде квадрата натурального числа (4, 9, 16, 25…), — тогда такое уравнение по неким очевидным причинам никаких решений, кроме x = ±1, а у = 0, не имеет.
В самом деле, попробуем найти нетривиальные решения уравнения х2 − 9у2 = ±1, то есть x · x = (3у) · (3у) ± 1. При «у», не равном нулю, получается, что квадраты двух целых чисел «x» и «3у» отличаются на единицу. Так мало они отличаться НЕ МОГУТ. Даже квадраты соседних целых ненулевых чисел (скажем, М и М + 1) отличаются больше, чем на 1, а именно: отличие их равно 2М + 1, причем М не равно 0.
Для всех остальных m прием, которым мы пользовались ранее при решении этой задачи, срабатывает. А прием этот был такой: нужно корень из m разложить в цепную дробь. То есть выделяем целую часть, потом «переворачиваем» оставшуюся дробную часть, получаем число, большее единицы, в нём опять выделяем целую часть, и так далее:
Я сказал в лекции 3, что для получения решения уравнения мы можем обрубить дробь в любом месте, привести к виду «целое число разделить на целое», и числа, которые получатся в числителе и знаменателе, будут нашими решениями. И для m = 2 это действительно можно делать на любом месте. Но если это утверждение применить для других значений m, то получится, что я немного обманул вас. Есть теорема, доказанная Ж. Л. Лагранжем, которая утверждает, что если мы разложим корень из числа, не являющегося квадратом, в цепную дробь, то цепная дробь начиная с некоторого места начнет повторяться. Появится период.
Врезка 6. О бессилии «наблюдения» без «доказательства»
Понятие периода последовательности не такое простое, как хотелось бы думать. Более того, это понятие демонстрирует бессилие прикладной математики для установления фактов чистой математики. Например, допустим, что прикладной математик изучает поведение следующей последовательности десятичных цифр: 2223222322232223.. Что скажет при этом «совсем простой наблюдатель»? То, что имеется период «2223», состоящий из 4 цифр. Более «утонченный наблюдатель» возразит: не будем спешить, понаблюдаем дальше за поведением этих цифр хотя бы до 34-го места. Сказано-сделано: получили
22232223222322237 22232223222322237…
Что, убедились?! Период-то имеет длину не четыре, а семнадцать! Но обиженный «простой наблюдатель» возразит:

