- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой
Шрифт:
Интервал:
Закладка:
Казалось бы, я просто поменял составляющие части квадрата местами так, чтобы из них получился аккуратный прямоугольник. Но погодите. Площадь квадрата равна 64 клеткам, а площадь прямоугольника – 65. Откуда же взялся этот довесок? На этой картинке трудно увидеть, что диагональ, пересекающая вторую фигуру, – не вполне прямая линия. Края составных частей не совсем прилегают друг к другу, что и приводит к появлению лишней клетки. Декарт, как известно, говорил: «Чувственное восприятие есть чувственный обман». С тех пор, как я увидел эту картинку, я, по-моему, никогда больше не мог полностью верить собственным глазам. Меня устраивают только строгие доказательства связей или паттернов на языке алгебры. Что, если с нечетными числами, которые я выкладывал по краям квадратов, тоже происходит нечто подобное этому хитрому фокусу?
Для разоблачения таких визуальных фокусов бывает полезно применить тот же шорткат в обратном направлении – превратить геометрические фигуры в числа. Декарт был одним из математиков, предложивших идею словаря для переводов между языком чисел и языком геометрии. Этот словарь был одним из величайших лингвистических изобретений, которые наряду с алгеброй позволяют находить шорткаты к пониманию Вселенной.
Собственно говоря, все мы хорошо знакомы с этим словарем: мы используем его, когда видим карту или навигатор GPS. Сетка, накладываемая на город или страну, позволяет мне идентифицировать любую точку на местности: два числа указывают, где эта точка расположена на сетке. Система GPS использует координатную сетку, горизонтальной осью которой служит экватор, а вертикальной – меридиан, проходящий через Гринвич.
Например, если я хочу посетить дом, в котором родился Декарт, находящийся в городе Декарт (названном так не по удивительному совпадению, а уже после его смерти[42]), попасть туда мне помогут его координаты: широта 46,9726497 и долгота 0,7000201. Любое положение на планете можно выразить при помощи двух таких чисел. Геометрия планеты переведена на язык чисел.
Декарт изложил эту плодотворную идею – применения координат для описания геометрии – в книге «Геометрия» (1637). При помощи этих чисел, называющихся теперь в честь человека, предложившего такой перевод, декартовыми (картезианскими) координатами, можно определить геометрическое положение не только на поверхности планеты, но и на любом изображении. Словарь Декарта открыл возможность перевода между геометрией и алгеброй.
Могущество этого перевода становится особенно ясным, когда нужно описать движение некоего объекта в пространстве. Бросьте мяч – и я смогу описать высоту мяча над землей в момент, когда он находится на заданном расстоянии от бросившего его. Связь между этими двумя величинами выражается математическим уравнением. Пусть х – расстояние, которое мяч пролетел по горизонтали. Пусть v – скорость мяча в вертикальном направлении в момент броска, а u – его горизонтальная скорость. Если обозначить высоту мяча над землей буквой y, то эти ингредиенты дадут формулу для определения этой высоты:
Буква g обозначает величину, которую называют ускорением свободного падения. Она определяет, насколько сильно мяч притягивается к данной планете под действием силы тяжести.
Как бы сильно или высоко вы ни бросили мяч, уравнение остается тем же самым. Нужно только изменить значения u и v, играющие роль регуляторов настройки, которые можно подкрутить, чтобы изменить форму траектории. Понимание этой закономерности, которая определяет, как летят по воздуху любые мячи, позволяет предсказать, где мяч упадет на землю. Ее формула – это квадратное уравнение относительно х. Если вы футболист и хотите узнать, где вам нужно встать, чтобы принять летящий мяч на голову и отправить его в ворота противника, вам нужно решить это уравнение относительно х. Как я рассказывал в предыдущей главе, древние вавилоняне нашли алгоритм для решения этой задачи еще четыре тысячи лет назад.
Но такие квадратные уравнения описывают не только траектории мячей. Если посмотреть на изменения цен на товары с колебаниями спроса и предложения, их зачастую можно описать уравнениями такого же типа. Когда уравнения описывают числа, появляется возможность научиться находить точку экономического равновесия, в которой товар оценивается при равенстве предложения и спроса. Компания, не умеющая использовать язык уравнений для представления своих данных, будет, как сказал Галилей, блуждать в темном лабиринте, пока ее конкуренты будут загребать прибыли.
Если у вас есть набор данных, полезно попытаться найти уравнение, описывающее связь между ними. Его обнаружение открывает поразительный шорткат к предсказанию того, что может случиться в будущем.
Такие паттерны бывают необычайно универсальными. В случае брошенного мяча не важно, кто именно бросил мяч, как его бросили или где его бросили. Даже если заменить один мяч на другой, общий вид уравнения останется неизменным.
Но при подгонке уравнений к данным необходима осторожность. Если взять данные о численности населения Соединенных Штатов за последнее столетие, они довольно хорошо описываются квадратным уравнением, подобным тому, с помощью которого мы описывали траекторию мяча. Однако, если использовать более сложное уравнение, в котором степень х доходит до х10, соответствие данным получается и вовсе точным. Казалось бы, это говорит о том, что более сложная формула должна дать более точные предсказания. Единственный недостаток состоит в том, что на середину октября 2028 года это уравнение предсказывает падение численности населения Соединенных Штатов до нуля. Или же уравнение знает нечто такое, чего не знаем мы.
Эта история служит предостережением тем, кто считает, что для научных исследований достаточно одного лишь использования больших данных. В данных действительно могут проявляться паттерны, но, чтобы понять, почему эти паттерны должны быть основаны на тех или иных уравнениях, мы по-прежнему должны сочетать данные с аналитическим мышлением. Сделанное Галилеем открытие квадратичного закона гравитации было впоследствии объяснено благодаря теоретическому анализу Ньютона, показавшему, почему в данном случае правильно использовать именно квадратные уравнения.
Шорткат в гиперпространство
Идея превращения геометрии в числа не только позволяет лучше ориентироваться в трехмерном пространстве. Она еще и открывает перед нами порталы в миры, которые мы никогда не увидим своими глазами. Одним из самых захватывающих моментов моего математического путешествия по искусству шортката было открытие возможности изучать многомерные пространства. Тот день, когда я впервые прочитал о том, как этот язык позволяет построить

