- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Мусорная ДНК. Путешествие в темную материю генома - Несса Кэри
Шрифт:
Интервал:
Закладка:
Однако врачи, лечившие пациентку, изучили информацию о ее семье и выяснили, что отец женщины не страдал мышечной дистрофией Дюшенна. Потребовалось другое объяснение. Иногда при выработке яйцеклеток или сперматозоидов мутации возникают довольно-таки спонтанно. Ген, кодирующий дистрофин, очень большой, так что он (исключительно в силу размеров, то есть, по существу, довольно случайного фактора) подвергается повышенному риску мутации по сравнению с большинством других генов человеческого генома. Дело в том, что мутация — это, по сути, игра с числами. Иными словами, количественные параметры имеют здесь очень большое значение. Чем крупнее ген, тем больше вероятность того, что он претерпит мутацию. Итак, вот один из механизмов, посредством которых женщина может унаследовать мышечную дистрофию Дюшенна: если ей достается мутантная хромосома от матери-носительницы и новая мутация, которая произошла в сперматозоиде, оплодотворившем яйцеклетку.
Что ж, вообще-то это неплохая гипотеза для объяснения того, почему пациентка получила заболевание. Но тут возникла одна проблема. У пациентки имелась сестра. Сестра-близнец. Более того, идентичный близнец — однояйцевый (монозиготный), то есть выросший в результате слияния той же яйцеклетки и того же сперматозоида. И эта сестра-близнец отличалась завидным здоровьем и не демонстрировала никаких симптомов дюшенновской мышечной дистрофии. Две генетически идентичные женщины. При этом у одной есть наследственное генетическое заболевание, а у другой — нет. Как такое может быть?
Вернемся к той сотне клеток, которые подвергаются X-инактивации на ранней стадии развития эмбриона. Чисто случайным образом примерно 50% из них отключают одну X-хромосому, а остальные отключают другую. Такой же характер X-инактивации передается и всем их дочерним клеткам, до конца жизни хозяина клеток.
Сестре с дюшенновской мышечной дистрофией просто катастрофически не повезло на этой стадии развития. По чистой случайности все клетки, которые в конечном счете должны были превратиться в мышечную ткань, выключили нормальную копию X-хромосомы. Речь идет о той копии, которую женщина унаследовала от отца. А значит, в ее мышечных клетках осталась включенной лишь та X-хромосома, которую она унаследовала от матери — носительницы заболевания. Иными словами, осталась включенной мутантная X-хромосома. Поэтому мышечные клетки женщины не смогли экспрессировать дистрофин, и у нее появились симптомы, которые обычно наблюдаются лишь у мужчин.
А когда развивалась ее сестра (которая, напомним, ее генетически идентичный близнец), некоторые из клеток, которые затем станут мышечной тканью, отключали нормальную X-хромосому, а некоторые — мутантную. Поэтому мышцы сестры экспрессировали достаточно дистрофина, чтобы поддерживать себя в здоровом состоянии. Вот сестра и стала, подобно собственной матери, носительницей заболевания, не проявляющей его симптомов17.
Неужели причина всего этого — просто флуктуация в распределении Xist-РНК, длинного фрагмента РНК, порожденного мусорной ДНК? Флуктуация длилась не больше двух часов. Она произошла в объеме пространства диаметром значительно меньше одной миллионной диаметра человеческого волоса. И тем не менее она предопределила, кто выиграет, а кто проиграет в этой лотерее, где выигрыш — здоровье.
Полосы и пятна везения
Быть может, еще удивительнее то, что некоторые из любителей кошек ежедневно наблюдают (и гладят) последствия X-инактивации. У черепаховых или трехцветных пятнистых кошек (по разные стороны Атлантики их называют по-разному) ярко выраженный узор из черных и рыжих пятен. Ген, контролирующий такую раскраску, может существовать в двух формах. Отдельная X-хромосома несет в себе либо рыжую, либо черную версию.
Если инактивируется X-хромосома, несущая черный цвет, то экспрессируется рыжая версия на другой хромосоме — и наоборот. Когда размер кошачьего эмбриона составляет примерно сотню клеток, в каждой клетке инактивируется одна или другая X-хромосома. Как и в других подобных случаях, все соответствующие дочерние клетки будут отключать ту же самую X-хромосому. В итоге некоторые из дочерних клеток породят клетки, которые создают пигмент шерсти. Все больше и больше таких клеток делятся и развиваются, но они остаются поблизости друг от друга. Таким образом, подобные дочерние клетки склонны держаться вместе — в кластерах (или, если угодно, пятнах). Благодаря определенной картине X-инактивации дочерних клеток будут возникать пятна рыжего меха и пятна черного меха. Этот процесс показан на рис. 7.2.
Рис. 7.2. Схема показывает, как появляются пятна рыжего или черного меха у черепаховых кошек (женского пола) в зависимости от инактивации X-хромосом, происходящей случайным образом. Гены, отвечающие за окраску шерсти, находятся в X-хромосоме. Если черная версия гена располагается в хромосоме, инактивируемой на ранней стадии развития эмбриона, все потомки этой клетки будут экспрессировать лишь рыжую версию гена. Обратная ситуация возникает, если инактивируется X-хромосома, несущая ген рыжести.
В 2002 году ученые весьма впечатляюще продемонстрировали, насколько случайным является процесс X-инактивации. Они клонировали трехцветную кошку. Взяв клетки взрослой кошки, они выполнили стандартную (но все равно ужасно сложную и хитроумную) процедуру клонирования. Для этого они взяли ядро из клетки взрослой кошки и поместили его в кошачью яйцеклетку, из которой предварительно удалили ее собственные хромосомы. Затем эту яйцеклетку подсадили кошке, игравшей роль суррогатной матери. Вскоре у этой кошки родился красивый и энергичный котенок женского пола. И что бы вы думали? Юная кошечка вовсе не оказалась генетически тождественной той, которую клонировали18.
Когда такую процедуру осуществляют для клонирования животных, яйцеклетка обращается с новым ядром так, как если бы оно являлось естественным продуктом слияния какой-то яйцеклетки с каким-то сперматозоидом, очутившимся в ней обычным путем. Она извлекает из ДНК столько информации, сколько возможно, тем самым снова обретая базовую генетическую последовательность. Это происходит не так эффективно, как с обычной яйцеклеткой и сперматозоидом, в чем и состоит одна из причин, по которым доля успешных клонирований такого типа пока еще очень низка. Но иногда (как в данном случае) процесс идет как планировалось, и на свет все-таки появляется клонированное животное.
Когда ядро кошки-матери поместили внутрь яйцеклетки другой кошки, эта яйцеклетка внесла свои изменения в полученные таким путем хромосомы. В частности, удалила инактивирующие белки одной из X-хромосом и отключила экспрессию Xist. Так что в течение краткого периода на ранней стадии развития обе копии X-хромосомы являлись активными. Эмбрион развивался дальше. На стадии, когда он состоял примерно из сотни клеток, он подвергся обычному процессу случайной инактивации X-хромосомы в каждой клетке. Характер инактивации X-хромосом стандартным путем передавался дочерним клеткам. Поэтому юная кошка стала обладать иным узором рыжих и черных пятен по сравнению со своей клональной «матерью».
Какова мораль этой истории? Если у вас есть трехцветная кошка, которую вы считаете необычайно красивой, не скупитесь на фотографии и видео. После ее смерти можете даже вызвать таксидермиста, чтобы он сделал чучело. Но если к вам постучится странствующий клонировщик, гоните его прочь. Он не поможет вам увековечить уникальное животное.
Глава 8. Длинная игра
Не один год Xist-РНК считалась аномалией, странным молекулярным «выбросом», оказывающим чрезвычайно необычное влияние на экспрессию генов. Даже когда открыли Tsix, все равно многие считали возможным полагать, будто мусорные РНК участвуют лишь в жизненно необходимом, но уникальном процессе X-инактивации. Только в последние годы ученые начали осознавать, что человеческий геном экспрессирует тысячи молекул такого типа, и что они играют неожиданно важную роль в нормальном функционировании клеток.
Сегодня мы относим Xist- и Tsix-РНК к обширному классу длинных некодирующих РНК. Этот термин не очень точен: конечно же, имеются в виду РНК, которые не кодируют белки. Как мы увидим, длинные некодирующие РНК преспокойно кодируют другие функциональные молекулы. И эти функциональные молекулы сами представляют собой длинные некодирующие РНК.
Длинные некодирующие РНК определяются как молекулы, длина которых превышает 200 нуклеотидных оснований (цифра взята довольно-таки произвольно) и которые не кодируют белки, что отличает их от информационной РНК. Двести оснований — нижний предел размера. Самые крупные из таких некодирующих РНК могут насчитывать по сотне тысяч оснований. Подобных РНК множество, хотя ученые расходятся во мнении относительно их общего числа. По различным оценкам, в геноме человека их содержится от 10 тысяч до 32 тысяч1,2,3,4. Но хотя длинных некодирующих РНК существует много, уровень их экспрессии обычно не так высок, как у классических информационных РНК, кодирующих белки — как правило, менее 10% от уровня экспрессии средней информационной РНК5.

