- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой
Шрифт:
Интервал:
Закладка:
В этот момент и началась математика. Это искусство распознавания паттернов, лежащих в основе бесконечного количества таких уравнений. Паттерн показывает, что требуется не потенциально бесконечная работа, а, по сути дела, всего одна операция. Выучивший алгоритм или формулу решения уравнения получает в свое распоряжение шорткат к решению бесконечно многих разных уравнений. Рождение математики в вавилонскую эпоху показывает, почему математику и в самом деле можно назвать искусством шортката.
Но позволяет ли этот шорткат решить все квадратные уравнения?
Как насчет решения уравнения x2 = –4? На протяжении многих столетий считалось, что у этого уравнения нет решений. Числа, которые мы используем для подсчета предметов, обладают тем свойством, что их возведение в квадрат всегда дает число положительное. Вавилонский алгоритм – или вавилонская формула – не помогает решить это уравнение, потому что для этого требовалось бы понять, что такое квадратный корень из –4.
Но в середине XVI века произошло одно довольно странное событие. В 1551 году итальянский математик Рафаэль Бомбелли работал над проектом осушения болот в долине Кьяна, относившейся тогда к Папской области. Все шло хорошо, пока работы внезапно не пришлось приостановить. Поскольку Бомбелли было нечем заняться, он решил написать книгу по алгебре. Его увлекли новые интересные формулы для решения уравнений, о которых он прочитал в книге другого итальянского математика, Джироламо Кардано.
Вавилоняне придумали формулу для решения квадратных уравнений. Но как быть с уравнениями кубическими, например, x3 – 15x – 4 = 0? Несколькими десятилетиями раньше многие математики заявляли, что нашли формулы для их решения. В то время математики не публиковали статьи в научных журналах, а сходились друг с другом в математических поединках – публичных диспутах. Я так и вижу эту великолепную картину: как субботним утром на городской площади собираются шумные фанаты местного математика, чтобы поддержать его в очередной схватке ученых. Формула одного из математиков явно превосходила своими достоинствами все то, что предлагали остальные. Этого единоборца от математики звали Никколо Фонтана, но более известно было его прозвище – Тарталья[27]. Ему, понятно, не хотелось раскрывать секрет своего успеха, но в конце концов Кардано уговорил его поделиться формулой при условии, что Кардано не будет ее разглашать.
Кардано держался несколько лет, но в конце концов не смог удержаться от искушения. Он напечатал формулу Тартальи во всей ее славе в своей знаменитой книге Ars Magna[28], вышедшей в свет в 1545 году. Когда Бомбелли прочитал книгу Кардано и применил пресловутую формулу к уравнению x3 – 15x – 4 = 0, произошло нечто довольно странное. В некоторый момент формула требовала извлечения квадратного корня из –121. Бомбелли мог извлечь квадратный корень из 121. В этом не было ничего сложного – он равен 11. Но что такое квадратный корень из –121?
У математиков и раньше возникала эта странная потребность извлекать квадратные корни из отрицательных чисел, но обычно, дойдя до этого места, они отступали. Кардано столкнулся с той же проблемой и бросил вычисления. Считалось, что таких чисел не бывает. Но Бомбелли оказался не робкого десятка. Он продолжил работу с формулой, приведенной в книге Кардано, просто оставив в ней это странное несуществующее, мнимое число. Затем числа как бы по волшебству взаимно сократились, и он получил решение: x = 4. И действительно, когда он подставил это решение в исходное уравнение, оно оказалось верным.
Чтобы добраться до пункта назначения – решения x = 4, – Бомбелли пришлось пересечь мир мнимых чисел. Он как бы прошел сквозь некое волшебное зеркало и обнаружил за ним новую страну, путь через которую вел к другому порталу, позволявшему вернуться в мир нормальных чисел и добраться до желанной цели. Но пути к решению, не проходившего через этот воображаемый мир, не существовало. Бомбелли начал подозревать, что речь идет не просто об искусственном приеме; что, может быть, такие числа, находящиеся по ту сторону зеркала, все же действительно существуют. Просто математикам нужно достаточно смелости, чтобы допустить их в мир чисел.
Работа, которую опубликовал Бомбелли, привела к открытию мнимых чисел. Первое из таких чисел, квадратный корень из –1, в конце концов получило особое обозначение – i. Буква i обозначает слово imaginaire – воображаемый, мнимый; это пренебрежительное название ввел несколько лет спустя французский философ и математик Рене Декарт, не питавший к этим странным неуловимым числам никаких теплых чувств.
И все же Бомбелли открыл их могущество. В его книге был приведен полный анализ способов обращения с мнимыми числами. При решении таких кубических уравнений те, кто был готов пройти сквозь зеркало в мир мнимых чисел, мог воспользоваться шорткатом к ответу. В конце концов математики начали называть такие числа компле́ксными, в отличие от чисел вещественных, известных всем нам с самого детства[29].
Настойчивость Бомбелли произвела большое впечатление на Лейбница, назвавшего его выдающимся мастером аналитического искусства: «Итак, некий инженер, Бомбелли, находит практическое применение комплексным числам – возможно, потому что они позволили ему добиться полезных результатов, – в то время как Кардано считал квадратные корни из отрицательных чисел бесполезными. Бомбелли первым дал описание каких бы то ни было комплексных чисел… Его изложение законов вычисления комплексных чисел отличается замечательной доскональностью».
На протяжении целых столетий математики продолжали относиться к этим числам чрезвычайно подозрительно. Если вам нужен квадратный корень из 2, это число, хотя его представление в виде десятичной дроби и бесконечно, можно найти на линейке. Оно расположено где-то между 1,4 и 1,5. Но где находится квадратный корень из –1? На линейке его не увидишь. В конце концов способ, позволяющий увидеть комплексные числа, придумал мой герой – Карл Фридрих Гаусс.
До Гаусса числа, которые использовали математики, изображали отметками на горизонтальной прямой: отрицательные числа отсчитывались влево, положительные – вправо. Гаусс принял гениальное решение пойти в новом направлении. Новые числа стали отсчитываться по вертикали. В представлении Гаусса числа стали не одно-, а двумерными. Его новая карта чисел оказалась чрезвычайно продуктивной. Ее геометрия отражала алгебраический характер поведения этих чисел. Как я объясню в главе 5, хороший чертеж бывает поразительно действенным шорткатом к объяснению сложных идей.
Гаусс изобрел это графическое представление комплексных чисел в процессе поисков доказательства одного поразительного их свойства. Если взять любое уравнение, каким бы сложным оно ни было, состоящее из разных степеней х, не только кубов, для нахождения его корней всегда

