Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев
Шрифт:
Интервал:
Закладка:
Вернемся к плоскости. «Простой» вопрос: какими многоугольниками можно замостить плоскость?
Что значит «замостить многоугольниками»? Я имею в виду следующее. Вы заходите в магазин и выбираете себе паркет. Понравившийся вам паркет состоит из одинаковых дощечек такой формы (рис. 42):
Кто-то в страшном сне придумал такую форму. И таких дощечек у вас немыслимое количество. Вопрос: «Можно ли собрать из них паркет? Или они при сборке входят в противоречие сами с собой?»
Рис. 42. Замысловатая паркетная плитка.
Слушатель: Ну, скорее всего, центр еще получится, а вот по краям комнаты будут проблемы.
А.С.: Вы, наверное, уже видите, что не всякими плитками можно замостить плоскость.
Но доказать, что какой-то конкретной плиткой нельзя замостить — довольно сложная задача. На самом деле, до сих пор не классифицированы даже все виды пятиугольников, которыми можно замостить плоскость. Найдено несколько пятиугольников, которыми можно замостить плоскость, но неизвестно, есть ли другие. Открытая проблема[12]. Но тем не менее методами Леонарда Эйлера можно доказать следующую теорему.
Теорема. Не существует ни одного выпуклого 7-угольника, которым можно замостить плоскость. Более того, восьми-, девяти-, десяти- и т. д. угольника тоже не существует.
А что такое «выпуклый»? Выпуклая фигура это такая фигура, у которой, если вы выбрали любые две ее точки, то весь отрезок между ними лежит внутри этой фигуры, не выходит за ее пределы.
Рис. 43. Слева — невыпуклая фигура, справа — выпуклая.
Выпуклость — одно из фундаментальных понятий математики. Такое простое определение, а на нём построена огромная сложнейшая теория с зубодробительными теоремами.
Почему же теорема требует выпуклости? Представьте себе царскую корону (рис. 44). Паркетина такой формы хотя и является 7-угольником, но он не выпуклый. Ниже мы увидим, что такими паркетинами МОЖНО замостить плоскость. Значит, если не требовать выпуклости, доказать указанную выше теорему нельзя — она просто неверна. Нельзя огульно утверждать, что паркетов из 7-угольников не бывает. Не бывает только из выпуклых.
Рис. 44. До царской короны страшно даже пальцем дотронуться!
Сколько углов? Семь. Однако такой плиткой можно без проблем замостить плоскость.
Переворачиваем фигурку и вставляем корону в корону, а потом еще раз, два… (см. рис. 45).
Рис. 45.… и получилась страшная зубастая пасть! Продолжаем ее до бесконечности вправо и влево.
Слушатель: А в конце как?
А.С.: До бесконечности. Мы же говорим о бесконечной плоскости. Полосу сделать у нас получилось… (бесконечную в обе стороны). Ну, а если можно полосу, то мы ее размножаем неограниченно вниз и вверх, и всё. Мы «запаркетили» всю плоскость. А теперь я нарисую выпуклый семиугольник (рис. 46).
Рис. 46. А вот этим нельзя замостить плоскость!
Априори совершенно не понятно, почему им нельзя замостить плоскость? Почему это так? Почему никакого семиугольника нельзя предложить в качестве дощечки для паркета? Если Ваша невеста просит Вас: «Милый, я так хочу выпуклый семиугольный паркет в нашу ванну!», — то это вариант «вежливого посыла» — ибо такого быть не может. Сейчас мы докажем эту теорему. И в этом доказательстве у нас в первый раз возникнет бесконечность «во весь рост». Как доказываются теоремы не существования чего-то? Какой прием доказательства таких теорем?..
Слушатель: От противного?
А.С.: Точно. Предположим, что существует выпуклый семиугольник, которым можно замостить плоскость. Не знаю какой, но какой-то есть. Предположим и приведем это предположение к противоречию. Итак, посмотрим на плоскость, которая замощена этими семиугольниками. Посмотрим на нее в «перевернутый бинокль» и увидим часть плоскости, как будто очень большую квартиру (см. рис. 47).
Я предупреждаю, такими доказательствами гоняют на ночь чертей. Приготовьтесь.
Начнем с того, что попробуем посчитать, сколько в квартире многоугольников. Давайте исходить из того, что наш семиугольник имеет длину 1 метр, а размер квартиры примерно 1 км.
Рис. 47. «Чертогон» в самом разгаре. Для справок можно почитать рассказ Н. С. Лескова с таким же названием.
На самом деле, но важно, какого что размера. Важно, чтобы вторая величина была неизмеримо больше, чем первая.
В данном случае «длина» семиугольника в 1000 раз меньше «длины» квартиры.
Слушатель: Что мы считаем длиной 7-угольника или квартиры?
А.С.: Например, самую большую диагональ. Это не очень важно. Тут математика немножко напоминает физику. Нужно несущественные детали не замечать, а на существенные обращать внимание. Когда у физика есть ниточка, она обычно имеет толщину ноль. На самом деле у нее, конечно, есть толщина, но физикам она не важна. Вот и нам не важно. Возьмем какое-то измерение семиугольника (например, любую из его сторон или любую диагональ). Ведь все эти измерения НАМНОГО МЕНЬШЕ, чем «длина квартиры» — что бы мы ни понимали под этой длиной. На полу квартиры в нормальной ситуации помещается очень много паркетин. Форма пола квартиры тоже неважна, поэтому будем считать его кругом радиуса R (где R может быть как угодно велико).
Не забывайте, что нам приказано замостить не пол в квартире, а всю бесконечную плоскость.
А теперь давайте посмотрим, сколько примерно семиугольников таится внутри вот этого огромного круга? С точностью до порядка? Если у нас диаметр круга в тысячу раз больше, чем диагональ семиугольника, сколько семиугольников примерно поместится в круг?
Слушатель: Миллион?
А.С.: Миллион, правильно. Правильный физический ответ. Миллион. Не важно, что это будет 700000 или 5 миллионов. В районе миллиона. Порядок величины такой. Это примерно миллион.
Слушатель: Почему миллион?
А.С.: Потому что у многоугольника размером 1 метр площадь сопоставима с 1 м2 — может быть, чуть меньше, чуть больше. У круга, у которого диаметр 1 километр, площадь порядка 1000000 м2. Значит, в круг влезает примерно миллион семиугольников.
Зададим теперь следующий вопрос. Сколько примерно семиугольников «живет» в районе границы этого круга (то есть зацепляет за границу круга)?
Слушатель: 6000.
А.С.: Да, похоже. 2πr = 6000. Порядок этого числа — не миллион, а тысяча. То есть внутрь входит в районе миллиона семиугольников, а на границе их несколько тысяч. А теперь — внимание! Я стираю все многоугольники, которые не лежат в этом круге. Затем беру плоскость и, как грузинский хинкали, сжимаю ее в сферу (рис. 48).
Рис. 48. Профессор сжал всю плоскость в сферу, и черти разбежались!
Делаю я это, чтобы воспользоваться формулой Эйлера:
В − Р +