- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Информация и человек - Сергей Сергеевич Сергеев
Шрифт:
Интервал:
Закладка:
И действительно, если пользоваться логикой заключённого, то вроде бы очень легко узнать назначенный день казни. Вернее, невозможность его назначения. Конечно же, это не так. Но при обработке информации «кусочками» (как это всегда делается при словесно-логическом мышлении), сознание на каком-то этапе «не увидело» нужную для данной ситуации информацию (какую-то аксиому) и сделало неправомерную «стыковку». Её суть мы разберём чуть ниже.
Рассмотрим ещё один софизм. Этот софизм Лев Толстой в «Войне и мире» приводит как демонстрацию одной из ситуаций, в которой сознание человека не замечает абсурдности логических выкладок: «Известен так называемый софизм древних, состоящий в том, что Ахиллес никогда не догонит впереди идущую черепаху, несмотря на то, что Ахиллес идёт в десять раз скорее черепахи: как только Ахиллес пройдёт пространство, отделяющее его от черепахи, черепаха пройдёт впереди его одну десятую этого пространства; Ахиллес пройдёт эту десятую, черепаха пройдёт одну сотую и т.д. до бесконечности».
Здесь тоже, как и в первом софизме, всё вроде бы логично, всё «стыкуется». Вот только объём информации небольшой, вся она легко помещается в зоне видимости, и сразу же бросается в глаза абсурдность результата.
В чём же заключается неправомерность стыковки в данных софизмах? Вспомним приведённый нами чуть выше абсурдный постулат об игре в шахматы. Его абсурдность в том, что мы допустили (в данном случае умышленно, конечно), что соперник будет думать (то есть обрабатывать информацию) точно так же, как и мы сами. Но ведь понятно, что у соперника свой опыт, своя логика, своё видение ситуации. Иначе говоря, в его сознании присутствует своя, не известная нам фоновая информация. Естественно, нельзя достоверно предугадать, как он поступит в том или ином случае. В конце концов, ему никто не запрещает пользоваться логикой персонажа одной из песен В. Высоцкого (речь идёт о шахматной партии этого персонажа с Фишером): «Мне же неумение поможет: / Этот Шифер ни за что не сможет / Угадать, чем буду я ходить». То есть надо, помимо всего прочего, учитывать и такую характеристику рассматриваемой информации: «Соперник может сделать любой ход, в том числе и такой, который с моей точки зрения является абсурдным».
Но вот в первом софизме заключённый «состыковал» именно такого рода нелогичность: он допустил, что его палач (или начальник палача, – словом, тот, кто принимает решение о казни) будет думать, как и он сам. Почему, собственно, надо исходить из предположения, что палач ни в коем случае не назначит казнь на последний день установленного срока? Ведь он может оказаться просто туповатым человеком и не сообразить, что заключённый догадается о казни заранее, то есть в субботу вечером. А если палач не тупица, то разве казнь в воскресенье исключена? Как раз именно в случае, если палач достаточно умён, он может разгадать логику заключённого и предположить, что тот догадается о невозможности назначения казни на воскресенье. И по этой логике назначить казнь именно на этот день, зная, что заключённый не будет ждать субботнего вечера чтобы заранее объявить о предстоящей казни. Впрочем, логика у палача может быть самой разной. Ясно только одно: нельзя достоверно предсказать логику другого человека. А заключённый именно это и сделал. И именно отсюда вытекает абсурдность всей логической цепочки.
А какая неправомерность «стыковки» информации допущена во втором софизме? Именно такая, какую мы умышленно допустили, когда говорили о десяти отрезках по сто метров и одном отрезке в тысячу метров. Отличие лишь в том, что в данном случае количество отрезков пути бесконечно. Здравый смысл подсказывает, что если требуется последовательно пройти бесконечно большое количество отрезков пути, пусть даже ничтожно малых, то идти придётся бесконечно долго, и до конечного пункта никогда не доберёшься. Всё логично. Но это логично только для человека, который совершенно не знаком с азами высшей математики и не знает такого понятия, как бесконечно малая величина. Само по себе это выражение подразумевает, вроде бы, какую-то «очень-очень маленькую» величину, например, одну миллиардную долю миллиметра. Или даже одну триллионную. Или ещё меньше. Но на самом деле это не совсем так. Для тех, кто совсем не знаком с математикой, поясним, что бесконечно малая величина это не какое-то конкретное «очень-очень маленькое» число. Это просто значение определённым образом заданной функции для определённых условий. Поясним конкретнее. Автор софизма задал бесконечно большое количество бесконечно малых отрезков пути не через совокупность конкретных величин, пусть и ничтожно малых, а через функцию: он задал бесконечно повторяющийся с определённой закономерностью цикл, который позволяет вычислить длину отрезка на любом этапе вычислений. Именно так в математике задаются бесконечно малые величины (не конкретным числом, а через функцию). Всегда получается числовой ряд с бесконечно большим количеством членов этого ряда. Но, пользуясь определёнными математическими методами, все члены подобного числового ряда можно просуммировать, несмотря на их бесконечное количество. При этом получаются вполне конкретные числа (не бесконечно малые или бесконечно большие, а просто «обычные» реальные числа). Точно так же, как в случае, когда мы складывали десять отрезков по сто метров, только методика суммирования несколько иная.
***
В данном конкретном случае если первоначальное расстояние от Ахиллеса до черепахи обозначить как S, то путь, который Ахиллесу надо пройти до черепахи, равен этому расстоянию плюс сумма S/10n, при n стремящемся к бесконечности (n=1,2,3…). Сумма всех отрезков равна 1,11111хS (одна целая и единица в периоде, умноженное на S). А время прохождения этих отрезков будет равно, соответственно, этому числу, поделённому на скорость ходьбы Ахиллеса. Совсем не бесконечно большое число.
Для лучшего понимания того, каким образом получается, что сумма бесконечно большого количества определённых величин может не превышать конкретного значения, можно рассмотреть такой пример. Допустим, нам надо записать в десятичной форме число 1/3. Это выглядит, как известно, так: 0,3333333… То есть, «ноль целых и три в периоде». Заметим: каждая последующая тройка имеет значение в десять раз меньше предыдущей, и их мы можем приписывать сколь

