Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Прочая научная литература » Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Читать онлайн Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 7 8 9 10 11 12 13 14 15 ... 78
Перейти на страницу:

Торговля оптимальной фиксированной долей

Все, о чем мы говорили выше, подготовило основу для этого раздела. Мы теперь знаем, что перед тем, как обсуждать величину ставок на данном рынке или в сис­теме, надо понять, есть ли у вас положительное математическое ожидание. Мы увидели, что так называемая «хорошая система» (когда математическое ожидание имеет положительное значение) фактически может быть не такой уж и хорошей при реинвестировании доходов, если реинвестировать слишком высокий про­цент выигрышей по отношению к разбросу результатов системы. Если в действи­тельности есть положительное математическое ожидание, каким бы маленьким оно ни было, используйте его с максимальной отдачей. При независимых испы­таниях это достигается посредством реинвестирования фиксированной доли ва­шего общего счета.[2]

Как нам найти это оптимальное f? В последние десятилетия азартными иг­роками использовалось множество систем, самая известная и точная из которых — «Система ставок Келли, являющаяся продолжением математической идеи, выдвинутой в начале 1956 года Джоном Л. Келли младшим.

Из критерия Келли следует, что мы должны использовать фиксированную долю счета (f), которая максимизирует функцию роста G (f):

где f = оптимальная фиксированная доля;

Р = вероятность выигрышной ставки или сделки;

В = отношение выигранной суммы по выигрышной ставке к про­игранной сумме по проигрышной ставке;

1n() = функция натурального логарифма.

Оказывается, что для систем с двумя возможными исходами это оптимальное f можно довольно легко найти с помощью формул Келли.

Формулы Келли

Начиная с конца 1940-х годов, инженеры компании Bell System работали над про­блемой передачи данных по международным линиям. Проблема, стоящая перед ними, заключалась в том, что линии были подвержены случайному, неизбежному «шуму», который мешал передаче данных. Инженерами компании было предло­жено несколько довольно оригинальных решений. Как это ни странно, наблюда­лись большие сходства между проблемой передачи данных и проблемой геомет­рического роста, которая относится к управлению деньгами в азартных играх (так как обе проблемы являются продуктом случайной среды). Так появилась первая формула Келли.

Первое уравнение выглядит следующим образом:

или

(1.09б) f=P-Q,

где f = оптимальная фиксированная доля;

Р = вероятность выигрышной ставки или сделки;

Q = вероятность проигрыша (1 - Р).

Обе формы уравнения (1.09) эквивалентны.

Уравнения (1.09а) или (1.096) для оптимального f дадут правильный ответ при условии, что выигрыши и проигрыши будут одинаковые по величине. В ка­честве примера рассмотрим следующий поток ставок:

Есть 10 ставок, 6 из них выигрышных, отсюда:

f=(0,6*2)-l =1,2-1=0,2

Если выигрыши и проигрыши не были бы одинакового размера, то эта формула не дала бы правильного ответа. Примером служит бросок монеты в игре «два к одному», где все выигрыши — 2 единицы, а проигрыши — 1 единица.В этом слу­чае формула Келли будет выглядеть следующим образом:

где t = оптимальная фиксированная доля;

Р = вероятность выигрышной ставки или сделки;

В = отношение выигранной суммы по выигрышной ставке к проигран­ной сумме по проигрышной ставке.

В нашем примере с броском монеты в игре «два к одному»:

f=((2+l)*0,5-1)/2 =(3*0,5-1)/2 =0,5/2 = 0,25

Эта формула даст правильный ответ для оптимального f при условии, что все вы­игрыши между собой всегда одинаковы и все проигрыши между собой всегда оди­наковы. Если это не так, формула не даст правильного ответа.

Формулы Келли применимы только к результатам, которые имеют распре­деление Бернулли (распределение с двумя возможными исходами). Торговля, к сожалению, не так проста. Применение формул Келли к иному распределе­нию является ошибкой и не даст нам оптимального f. Более подробно о распреде­лении Бернулли рассказано в приложении В.

Поиск оптимального f с помощью среднего геометрического.

В реальной торговле размер проигрышей и выигрышей будут постоянно меняться. Поэтому формулы Келли не могут дать нам правильное оптимальное f. Как корректно с математической точки зрения найти оптимальное f, которое по­зволит нам определить количество контрактов для торговли? Попытаемся ответить на этот вопрос. Для начала мы должны изменить формулу для поиска HPR, включив в нее f:

где -Сделка= прибыль или убыток в этой сделке (с проти­воположным знаком, чтобы убыток стал по­ложительным числом, а прибыль — отрица­тельным);

Наибольший проигрыш = наибольший убыток за сделку (это всегда отрица­тельное число).

TWR — это произведение всех HPR, а среднее геометрическое (G) — это корень N-й степени TWR.

где - Сделкаi = прибыль или убыток по сделке i (с противо­положным знаком, чтобы убыток был поло­жительным числом, а прибыль — отрицательным);

Наибольший проигрыш = результат сделки, которая дала наиболь­ший убыток (это всегда должно быть от­рицательное число);

N = общее количество сделок;

G = среднее геометрическое HPR.

Просмотрев значения/от 0,01 до 1, мы найдем/, которое даст наивысшее TWR. Это значение f позволит получить максимальную прибыль при торговле фикси­рованной долей. Мы можем также сказать, что оптимальное f позволяет получить наивысшее среднее геометрическое. Не имеет значения, что мы ищем: наивыс­шее TWR или среднее геометрическое, так как обе величины максимальны при одном и том же значении f.

Описанную выше процедуру достаточно легко осуществить с помощью компьютера, перебирая f от 0,01 до 1,00. Как только вы получите TWR, которое меньше предыдущего, то знайте, что f, относящееся к предыдущему TWR, является оптимальным f, поскольку графики TWR и среднего геометрического име­ют один пик. Чтобы облегчить процесс поиска оптимального f диапазоне от 0 до 1, можно использовать разные алгоритмы. Один из самых быстрых способов расчета оптимального f — это метод параболической интерполяции, который детально описан в книге «Формулы управления портфелем».

Мы увидели, что лучшей торговой системой является система с наивыс­шим средним геометрическим. Для расчета среднего геометрического необ­ходимо знать f. Итак, давайте поэтапно опишем наши действия.

1. Возьмите историю сделок в данной рыночной системе.

2. Найдите оптимальное f, просмотрев различные значения f от 0 до 1. Опти­мальное f соответствует наивысшему значению TWR.

3. После того, как вы найдете f, возьмите корень N-й степени TWR (N — общее ко­личество сделок). Это и есть ваше среднее геометрическое для данной рыночной системы. Теперь можно использовать полученное среднее геометрическое, что­бы сравнивать эту систему с другими. Значение f подскажет вам, сколькими кон­трактами торговать в данной рыночной системе. После того, как найдено f, его можно перевести в денежный эквивалент, разделив наибольший проигрыш на отрицательное оптимальное/. Например, если наиболь­ший проигрыш равен 100 долларам, а оптимальное f = 0,25, тогда -100 долла­ров / -0,25 = 400 долларов. Другими словами, следует ставить 1 единицу на каж­дые 400 долларов счета. Для простоты можно все рассчитывать на основе единиц (например одна 5-долларовая фишка или один фьючерсный контракт, или 100 акций). Количество долларов, которое следует отвести под каждую единицу, мож­но рассчитать, разделив ваш наибольший убыток на отрицательное оптимальное f. Оптимальное f — это результат равновесия прибыльности системы (на основе 1 единицы) и ее риска (на основе 1 единицы). Многие думают, что оптимальная фиксированная доля — это процент счета, который отводится под ваши ставки. Это совершенно неверно. Должен быть еще один шаг. Оптимальное f само по себе не является процентом вашего счета, который отводится под торговлю, это дели­тель наибольшего проигрыша. Частным этого деления является величина, на ко­торую надо разделить общий счет, чтобы выяснить, сколько ставок сделать или сколько контрактов открыть на рынке.

Необходимо отметить, что залог под открытые позиции не имеет ничего общего с тем, какое математически оптимальное количество контрактов надо откры­вать. Залог не так важен, поскольку размеры отдельных прибылей и убытков не являются продуктом залоговых средств. Прибыли и убытки зависят от выигрыша и убытка в расчете на одну открытую единицу (один фьючерсный контракт). Для управления деньгами залог не имеет значения, так как размер убытка не ограни­чивается только залоговыми средствами. Многие ошибочно полагают, что f является линейной функцией, и чем боль­шей суммой рисковать, тем больше можно выиграть, так как по мнению сторонников такого подхода положительное математическое ожидание является зер­кальным отражением отрицательного ожидания, то есть если увеличение общего оборота в игре с отрицательным ожиданием в результате приносит более быст­рый проигрыш, то увеличение общего оборота в игре с положительным ожидани­ем в результате принесет более быстрый выигрыш. Это неправильно. В некоторой точке в ситуации с положительным ожиданием дальнейшее увеличение общего оборота работает против вас. Эта точка является функцией как прибыльности си­стемы, так и ее стабильности (то есть ее средним геометрическим), так как вы ре­инвестируете прибыли обратно в систему. Когда два человека сталкиваются с од­ной и той же последовательностью благоприятных ставок или сделок, и один ис­пользует оптимальное f, а другой использует любую другую систему управления деньгами, математическим фактом является то, что отношение счета держащего пари на основе оптимального f к счету другого человека будет увеличиваться с те­чением времени с все более высокой вероятностью. Через бесконечно долгое вре­мя держащий пари на основе оптимального f будет иметь бесконечно большее со­стояние, чем его оппонент, использующий любую другую систему управления деньгами, с вероятностью, приближающейся к 1. Более того, если участник пари ставит своей целью достижение определенного капитала, и он стоит перед серией благоприятных ставок или сделок, то ожидаемое время достижения этой цели бу­дет короче с оптимальным f, чем с любой другой системой ставок.

1 ... 7 8 9 10 11 12 13 14 15 ... 78
Перейти на страницу:
На этой странице вы можете бесплатно скачать Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС торрент бесплатно.
Комментарии