9. Квантовая механика II - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Если к полупроводнику n-типа приложить электрическое поле, то каждый отрицательный носитель приобретет в этом поле ускорение, набирая скорость до тех пор, пока не рассеется на одном из донорных узлов. Это означает, что носители, которые обычно движутся случайным образом, имея при этом тепловую энергию, начнут в среднем повышать свою скорость дрейфа вдоль линий электрического поля, вызвав ток через кристалл. Скорость дрейфа, как правило, по сравнению с типичными тепловыми скоростями очень мала, так что можно, прикидывая величину тока, принять, что от столкновения к столкновению среднее время странствий носителя постоянно. Допустим, что эффективный электрический заряд отрицательного носителя равен qn. Сила, действующая на носитель в электрическом поле x, будет равна qnx. В гл. 43, §3 (вып. 4) мы как раз подсчитывали среднюю скорость дрейфа в таких условиях и нашли, что она равна Ft/m, где F — сила, действующая на заряд; t — среднее время свободного пробега между столкновениями, а m— масса. Вместо нее надо поставить эффективную массу, которую мы подсчитывали в предыдущей главе, но поскольку нас интересует только грубый расчет, то предположим, что эта эффективная масса во всех направлениях одинакова. Мы ее здесь обозначим mn. В этом приближении средняя скорость дрейфа будет равна
Зная скорость дрейфа, можно найти ток. Плотность электрического тока j равна просто числу носителей в единице объема, Nn, умноженному на среднюю скорость дрейфа и на заряд носителей. Поэтому плотность тока равна
Мы видим, что плотность тока пропорциональна электрическому полю; такие полупроводниковые материалы подчиняются закону Ома. Коэффициент пропорциональности между j и x, или проводимость s, равен
Для материалов n-типа проводимость в общем не зависит от температуры. Во-первых, общее число основных носителей Nnопределяется главным образом плотностью доноров в кристалле (пока температура не настолько низка, чтобы позволять атомам захватить чересчур много носителей), а, во-вторых, среднее время от соударения к соударению, tn, регулируется главным образом плотностью атомов примеси, а она, ясное дело, от температуры не зависит.
Те же рассуждения можно приложить к веществу p-типа, переменив только значения параметров, которые появляются в (12.7). Если в одно и то же время имеется сравнимое количество отрицательных и положительных носителей, то вклады носителей обоего рода надо сложить. Полная проводимость определится из
Для очень чистых веществ Nри Nnпримерно равны. Они будут меньше, чем у материалов с примесями, так что и проводимость будет меньше. Кроме того, они будут резко меняться с температурой (по закону), так что проводимость с температурой может меняться чрезвычайно быстро.
§ 3. Эффект Холла
Конечно, это очень странно, что в веществе, где единственными более или менее свободными объектами являются электроны, электрический ток вызывается дырками, которые ведут себя как положительные частицы. Мы хотим поэтому описать опыт, который довольно явно свидетельствует, что знак носителя электрического тока может быть положительным. Пусть имеется брусок, изготовленный из полупроводящего вещества (или из металла), и мы прикладываем к нему электрическое поле, чтобы вызвать ток в каком-то направлении, скажем в горизонтальном (фиг. 12.6).
Фиг. 12.6. Эффект Холла возникает при действии магнитных сил на носители.
Сверху и снизу указаны знаки заряда при положительных и отрицательных (в скобках) носителях.
Пусть мы также приложили к бруску магнитное поле под прямым углом к току, скажем, чтобы оно уходило в плоскость чертежа. Движущиеся носители будут испытывать действие магнитной силы q(vXВ). А так как средняя скорость дрейфа направлена либо направо, либо налево (смотря по тому, каков знак заряда носителя), то действующая на носители средняя магнитная сила будет направлена либо вверх, либо вниз. Впрочем, нет! При выбранных нами направлениях тока и магнитного поля магнитная сила, действующая на движущийся заряд, всегда будет направлена вверх. Положительные заряды, движущиеся в направлении j (направо), подвергнутся действию силы, направленной вверх. А если ток переносится отрицательными зарядами, то они будут двигаться влево (при том же знаке тока проводимости) и также испытывают действие силы, направленной кверху. Но после установления тока никакого движения носителей вверх не будет, потому что ток может течь только слева направо. Вначале несколько зарядов могут потечь вверх, образовав вдоль верхнего края полупроводника поверхностную плотность заряда и оставив равную по величине и обратную по знаку поверхностную плотность заряда на нижней грани кристалла. Заряды на верхней и нижней поверхностях будут накапливаться до тех пор, пока электрические силы, с которыми они действуют на движущиеся заряды, в точности погасят (в среднем) действие магнитной силы, и установившийся ток пойдет по горизонтали. Заряды на верхней и нижней поверхностях создадут по вертикали поперек кристалла разность потенциалов, которую можно измерить высокоомным вольтметром (фиг. 12.7).
Фиг. 12.7. Измерение эффекта Холла.
Знак разности потенциалов, отмечаемый вольтметром, будет зависеть от знака носителей зарядов, ответственных за ток.
Когда впервые ставились эти опыты, считалось, что знак разности потенциалов окажется отрицательным, как и положено отрицательным электронам проводимости. Поэтому все были очень удивлены, обнаружив, что у некоторых веществ знак разности потенциалов совсем не тот. Дело выглядело так, словно носитель тока — частица с положительным знаком. Из наших рассуждений о примесных полупроводниках ясно, что полупроводник n-типа обязан вызывать знак разности потенциалов, свойственный отрицательным носителям, а полупроводник p-типа должен вызывать разность потенциалов противоположного знака, поскольку ток создается положительно заряженными дырками.
Открытие аномального знака разности потенциалов в эффекте Холла сначала было сделано не в полупроводнике, а в металле. Считалось, что уж в металлах-то проводимостью всегда занимаются электроны, и вдруг оказалось, что у бериллия знак разности потенциалов не тот. Теперь ясно, что в металлах, как и в полупроводниках, при некоторых обстоятельствах «объектами», ответственными за проводимость, оказываются дырки. Хотя в конечном счете в кристалле движутся электроны, тем не менее соотношение между импульсом и энергией и отклик на внешнее поле в точности такие, каких следовало бы ожидать, если бы электрический ток осуществлялся положительными частицами.
Поглядим, нельзя ли качественно оценить, какая разность потенциалов может быть получена при эффекте Холла. Если ток через вольтметр (см. фиг. 12.7) пренебрежимо мал, то заряды внутри полупроводника должны двигаться слева направо и вертикальная магнитная сила должна в точности гаситься вертикальным электрическим полем, которое мы обозначим x┴ (индекс означает «поперечный»). Чтобы это электрическое поле уничтожало магнитные силы, должно быть
Припоминая связь между скоростью дрейфа и плотностью электрического тока, приведенную в (12.6), получаем
Разность потенциалов между верхом и низом кристалла равна, естественно, этой самой напряженности электрического поля, умноженной на высоту кристалла. Напряженность электрического поля в кристалле x┴ пропорциональна плотности тока и напряженности магнитного поля. Множитель пропорциональности 1/qN называется коэффициентом Холла и обычно изображается символом RH. Коэффициент Холла зависит просто от плотности носителей при условии, что носители одного знака находятся в явном большинстве. Поэтому измерение эффекта Холла дает удобный способ опытным путем определять плотность носителей в полупроводнике.
§ 4. Переходы между полупроводниками
Теперь мы хотим выяснить, что получится, если взять два куска германия или кремния с неодинаковыми внутренними характеристиками, скажем с разным количеством примеси, и приложить их друг к другу, чтобы возник «переход». Начнем с того, что именуется p—n-переходом, когда с одной стороны границы стоит германий p-типа, а с другой — германий n-типа (фиг. 12.8).