- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
9. Квантовая механика II - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Если количество электронов в единице объема есть Nn (n означает негативных, или отрицательных, носителей), а плотность положительных (позитивных) носителей Np, то вероятность того, что за единицу времени электрон с дыркой встретятся и проаннигилируют, пропорциональна произведению NnNp. При равновесии эта скорость должна равняться скорости, с какой образуются пары. Стало быть, при равновесии произведение NnNpдолжно равняться произведению некоторой постоянной на больцмановский множитель
Говоря о постоянной, мы имеем в виду ее примерное постоянство. Более полная теория, учитывающая различные детали того, как электроны с дырками «находят» друг друга, свидетельствует, что «постоянная» слегка зависит и от температуры; но главная зависимость от температуры лежит все же в экспоненте.
Возьмем, например, чистое вещество, первоначально бывшее нейтральным. При конечной температуре можно ожидать, что число положительных и отрицательных носителей будет одно и то же, Nn= Nр. Значит, каждое из этих чисел должно с температурой меняться как. Изменение многих свойств полупроводника (например, его проводимости) определяется главным образом экспоненциальным множителем, потому что все другие факторы намного слабее зависят от температуры. Ширина щели для германия примерно равна 0,72 эв, а для кремния 1,1 эв.
При комнатной температуре kТ составляет около 1/40 эв. При таких температурах уже есть достаточно дырок и электронов чтобы обеспечить заметную проводимость, тогда как, скажем, при 30°К (одной десятой комнатной температуры) проводимость незаметна. Ширина щели у алмаза равна 6—7 эв, поэтому при комнатной температуре алмаз — хороший изолятор.
§ 2. Примесные полупроводники
До сих пор мы говорили только о двух путях введения добавочных электронов в кристаллическую решетку, которая во всем остальном совершенно идеальна. Один путь — это впрыснуть электрон от внешнего источника, а другой — выбить связанный электрон из нейтрального атома, сотворив одновременно и электрон и дырку. Но можно внедрить электроны в зону проводимости кристалла совершенно иным способом. Представим себе кристалл германия, в котором один из атомов германия заменен атомом мышьяка. У атомов германия валентность равна 4, и кристаллическая структура контролируется четырьмя валентными электронами. А у мышьяка валентность равна 5. И вот оказывается, что отдельный атом мышьяка в состоянии засесть в решетке германия (потому что габариты у него как раз такие, как надо), но при этом он будет вынужден действовать как четырехвалентный атом, тратя четыре валентных электрона из своего запаса на создание кристаллических связей и отбрасывая пятый. Этот лишний электрон привязан к нему очень слабо — энергия связи менее 1/10 эв. При комнатной температуре электрон с легкостью раздобудет такую небольшую энергию у тепловой энергии кристалла и отправится на свой страх и риск блуждать по решетке на правах свободного электрона. Примесный атом наподобие мышьяка называется донорным узлом, потому что он может снабдить кристалл отрицательным носителем. Если кристалл германия выращивается из расплава, куда было добавлено небольшое количество мышьяка, то мышьяковые донорские пункты распределятся по всему кристаллу и у кристалла появится определенная плотность внедренных отрицательных носителей.
Могло бы показаться, что малейшее электрическое поле, приложенное к кристаллу, смело бы эти носители прочь. Но этого не случится, ведь каждый атом мышьяка в теле кристалла заряжен положительно. Чтобы весь кристалл оставался нейтральным, средняя плотность отрицательных носителей — электронов — должна быть равна плотности донорных узлов. Если вы приложите к граням этого кристалла два электрода и подключите их к батарейке, пойдет ток; но если с одного конца уносятся электроны-носители, то на другой конец должны поступать свежие электроны проводимости, так что средняя плотность электронов проводимости остается все время примерно равной плотности донорных узлов.
Поскольку донорные узлы заряжены положительно, у них должно наблюдаться стремление перехватывать некоторые из электронов проводимости, когда последние блуждают по кристаллу. Поэтому донорный узел должен действовать как раз как та ловушка, о которой мы говорили в предыдущем параграфе. Но если энергия захвата достаточно мала (как у мышьяка, например), то общее число захваченных в какой-то момент носителей должно составлять лишь малую часть их общего числа. Для полного понимания поведения полупроводников этот захват, конечно, следует иметь в виду. Однако мы в дальнейшем будем считать, что энергия захвата настолько низка, а температура так высока, что на донорных узлах нет электронов. Конечно, это всего-навсего приближение.
Можно также внедрить в кристалл германия атом примеси с валентностью 3, скажем атом алюминия. Этот атом пытается выдать себя за объект с валентностью 4, воруя добавочный электрон у соседей. Он может украсть электрон у одного из соседних атомов германия и оказаться в конце концов отрицательно заряженным атомом с эффективной валентностью 4. Конечно, когда он стащит у атома германия электрон, там остается дырка; и эта дырка начинает блуждать по кристаллу на правах положительного носителя. Атом примеси, который способен таким путем образовать дырку, называется акцептором от корня «акцепт» — принимать. Если кристалл германия или кристалл кремния выращен из расплава, в который была добавлена небольшая присадка алюминия, то в кристалле окажется определенная плотность дырок, которые действуют как положительные носители.
Когда к полупроводнику добавлена донорная или акцепторная примесь, мы говорим о «примесном» полупроводнике.
Когда кристалл германия с некоторым количеством внедренной донорной примеси находится при комнатной температуре, то электроны проводимости поставляются как донорными узлами, так и путем рождения электронно-дырочных пар за счет тепловой энергии. Естественно, электроны от обоих источников вполне эквивалентны друг другу, и в игру статистических процессов, ведущих к равновесию, входит их полное число Nn. Если температура не слишком низкая, то число отрицательных носителей, поставляемых атомами донорной примеси, примерно равно количеству имеющихся атомов примеси. При равновесии уравнение (12.4) еще обязано соблюдаться; произведение NnNpпри данной температуре есть вполне определенное число.
Это означает, что добавление донорной примеси, которое увеличивает число Nn, вызывает такое уменьшение количества Npположительных носителей, что NnNpне изменяется. Если концентрация примеси достаточно высока, то число Nnотрицательных носителей определяется количеством донорных узлов и почти не зависит от температуры — все изменения в экспоненте происходят за счет Nр, даже если оно много меньше Nn. В чистом в других отношениях кристалле с небольшой концентрацией донорной примеси будут преобладать отрицательные носители; такой материал называется полупроводником «n-типа».
Если в кристаллической решетке добавлена примесь акцепторного типа, то кое-какие из новых дырок, блуждая, начнут аннигилировать с некоторыми свободными электронами, создаваемыми тепловыми флуктуациями. Это будет продолжаться до тех пор, пока не выполнится уравнение (12.4). В равновесных условиях количество положительных носителей возрастает, а количество отрицательных убывает, поддерживая произведение постоянным. Материал с избытком положительных носителей называется полупроводником «p-типа».
Если к полупроводниковому кристаллу приложить пару электродов и присоединить их к источнику разницы потенциалов, то внутри кристалла появится электрическое поле. Оно вынудит двигаться положительные и отрицательные носители, и потечет электрический ток. Посмотрим сперва, что произойдет в материале n-типа, в котором имеется подавляющее большинство отрицательных носителей. В таком материале дырками можно пренебречь; они очень слабо скажутся на токе, потому что их мало. В идеальном кристалле при конечной температуре (а особенно в кристалле с примесями) электроны перемещаются не совсем беспрепятственно. С ними беспрерывно происходят столкновения, которые сбивают их с намеченного ими пути, т. е. меняют их импульс. Эти столкновения — те самые рассеяния, о которых мы толковали в предыдущей главе и которые происходят на неровностях кристаллической решетки. В материале re-типа главной причиной рассеяния служат те самые донорные узлы, которые поставляют носителей. Раз у электронов проводимости энергия на донорных узлах немного иная, то волны вероятности обязаны на этом месте рассеиваться. Но даже в идеально чистом кристалле бывают (при ненулевой температуре) нерегулярности решетки, вызванные тепловыми колебаниями. С классической точки зрения можно говорить, что атомы не выстроены точно в правильную решетку, а в любое мгновение немного сдвинуты со своих мест по причине тепловых колебаний. Энергия Е0, связывавшаяся по теории, изложенной в гл. 11, с каждой точкой решетки, чуть-чуть меняется от одного места к другому, так что волны амплитуды вероятности не передаются идеально, а каким-то неправильным образом рассеиваются. И при очень высоких температурах или для очень чистых веществ такое рассеяние может стать очень важным, но в большинстве примесных полупроводников, применяемых в практических устройствах, рассеяние происходит только за счет атомов примеси. Мы сейчас оценим величину электрической проводимости в таких веществах.