- Любовные романы
- Фантастика и фэнтези
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
9. Квантовая механика II - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Фиг. 19.8. Запись тока через два параллельных перехода Джозефсона как функции магнитного поля в области между двумя переходами.
Здесь мы видим общий фон от токов, вызываемых различными эффектами, которыми мы пренебрегли, но быстрые колебания тока при изменении магнитного поля объясняются наличием интерференционного члена cos(qeФ/h) в (19.52).
Один из самых интригующих вопросов квантовой механики— это вопрос о том, существует ли векторный потенциал в том месте, где нет поля. Опыт, который я только что описал, был проделан тоже с узеньким соленоидом, помещенным между двумя переходами, так что заметное магнитное поле В было только внутри соленоида, а на сверхпроводящие провода его попадало пренебрежимо мало. И вот оказалось, что сила тока колеблется с изменением потока магнитного поля внутри этого соленоида, даже если само поле и не касается проводов. Это еще одно доказательство «физической реальности» векторного потенциала [см. гл. 15, § 5 (вып. 6)].
Я не знаю, что теперь на очереди. Но посмотрите-ка, что можно было бы сделать. Во-первых, заметьте, что интерференция между двумя переходами может быть применена для создания чувствительного магнитометра. Если площадь, охватываемая двумя переходами, равна, скажем, 1 мм2, то максимумы на кривой фиг. 19.8 будут отстоять друг от друга на 2·10-5 гс. Одну десятую промежутка между пиками запросто можно заметить; значит, таким соединением можно будет измерять поля величиной в 2·10-6гс, или замерять большие поля со столь же хорошей точностью. Можно даже пойти дальше. Представим, например, что мы вплотную друг к другу на равных расстояниях расставили 10—20 переходов. Тогда получится интерференция на 10—20 щелях, и при изменении магнитного поля мы получим очень резкие максимумы и минимумы. Вместо интерференции на двух щелях у нас будет двадцати-, а может быть, и стощелевой интерферометр для измерения магнитного поля. Вероятно, можно предсказать, что измерения магнитных полей при использовании квантовомеханической интерференции станут почти такими же точными, как измерения длин световых волн.
Это еще одна иллюстрация к тому, что происходит в физике в последнее время — появление транзистора, лазера, а теперь эти переходы сверхпроводников, практическое значение которых пока еще не раскрыто полностью. Квантовая механика, открытая в 1926 г., имела за своими плечами почти 40 лет развития, когда вдруг внезапно она получила множество реальных практических применений. Как-то сразу появилась возможность крайне деликатно и тонко управлять природой.
И должен вам сообщить, джентльмены, как это ни прискорбно, что для того, чтобы принять в этом участие, вам абсолютно необходимо как можно быстрее изучить квантовую механику. В этом курсе мы попытались отыскать путь, на котором тайны этой области физики стали бы вам понятными как можно раньше.
КОНЕЦ ТРЕТЬЕГО ТОМА
*Jaklevic, Lambe, Silver, Mercereau, Phys. Rev. Letters, 12, 159 (1964).
**Jaklevic, Lambe, Silver, Mercereau, Phys. Rev. Letters, 12, 274 (1964).
* P. W. Andersоn, J. M. Роwеll, Phys. Rev. Letters, 10, 230 (1963).
** S. Shapiro, Phys. Rev. Letters, 11, 80 (1963).
* В. D. Josephson, Physics Letters, 1, 251 (1962).
* Когда-то Онзагер говорил, что это возможно (см. цитированную на стр. 243 книжку Лондона), но никто не понимал, почему.
* F. London, Superfluids, Vol. 1, New York, 1950, p. 152.
** B. S. Deaver, Jr., W. M. Fairbank, Phys. Rev. Letters, 7, 43 (1961).
*** R. Doll, M. Nabauer, Phys. Rev. Letters, 7, 51 (1961),
* В действительности, если бы электрическое поле оказалось чересчур сильным, то пары разорвались бы, и среди возникших «нормальных» электронов началось бы движение за нейтрализацию всяческих излишеств в положительном заряде. Но все же для образования этих нормальных электронов понадобилась бы энергия, так что основная мысль, заключающаяся в том, что почти однородная плотность r очень выгодна энергетически, остается справедливой.
** Н. London, F. London, Proc. Roy. Soc. (London), A149, 71 (1935); Physica, 2, 341 (1935).
* W. Meissner, R. Oclisenfeld, Naturwiss., 21, 787 (1933).
* I. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev., 108, 1175 (1957) (см. перевод в сборнике «Теория сверхпроводимости», ИЛ, 1960).
* Впервые это открыл Оннес в 1911 г. [Н. К. Оnnes, Comm. Phys. Lab., Univ. Leyden, № 119, 120, 122 (1911)]. Прекрасное современное изложение предмета вы найдете в книге E. A. Lуntоn, Superconductivity, New York, 1962 (есть перевод: E. Линтон, Сверхпроводимость, М., 1964).
* См., например, J. D. Jackson, Classical Electrodynamics, New York, 1962 (есть перевод: Д. Джексон, Классическая электродинамика, изд-во «Мир», 1965).
* Только, пожалуйста, не путайте это j с нашим прежним обозначением состояния j !
** К — это та самая величина, которая в задаче о линейной решетке обозначалась буквой А (см. гл. 11).
* Фактически это не напоминание, потому что некоторые из этих уравнений я раньше не приводил; не забудьте, что я веду настоящий семинар.