Категории
Самые читаемые
Лучшие книги » Фантастика и фэнтези » Научная Фантастика » Том (7). Острие шпаги - Александр Казанцев

Том (7). Острие шпаги - Александр Казанцев

Читать онлайн Том (7). Острие шпаги - Александр Казанцев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 77 78 79 80 81 82 83 84 85 86
Перейти на страницу:

Трудный юридический случай. (Примеч. авт.)

22

Свои выводы по теории вероятностей Ферма опубликовал лишь по инициативе Паскаля в 1654 году, а применение этой теории в судебном деле нашло своих теоретиков лишь спустя более чем столетие в трудах маркиза Кондерса, а также Лапласа и Пуассона. (Примеч. авт.)

23

Омнибус, предложенный Б. Паскалем.

24

Метод Ферма, в свое время несправедливо оспоренный Декартом, предвосхищал дифференциальное и интегральное исчисление, хотя задачу решал алгебраически, без анализа бесконечно малых величин. В задаче разбивки прямой с длиной «a» на две части, так, чтобы квадрат одной (x2), помноженный на величину другой части = (a – x), был бы максимальным, он приравнивал 2ax – 3x2к нулю и получал, что x = 2 / 3a, то есть заменял современное дифференцирование и взятие первой производной.

25

Правота Торричелли была подтверждена знаменитым опытом Герике, получившим название «Магдебургские полушария», проведенным в Магдебурге лишь в 1654 году и доказавшим существование атмосферного давления. Торричелли принадлежит изобретение ртутного барометра и создание над ртутным столбом «торричеллиевой пустоты». (Примеч. авт.)

26

Примечание автора для особо интересующихся. Автору удалось восстановить позицию в виде этюда с таким решением:

1. Лg1! (1. e7? f: g4 2. e8=Ф Кf8+ 3. Крd8 Л: e8+ 4. Кр: e8 с шансами у черных.) 1… Л: g1 2. Сe5+! d: e5 3. e7 Л: g5 4. Кd5 Кf6+ 5. К: f6 Кр: f6 6. e8=К+ мат!

6. e8=Ф? f4 7. Фe7+ Крf5 8. Ф: f7+ Крg4 9. Фe6+ Лf5! 10. Ф: g6+ Лg5 11. Фe6+ Лf5 12. Фg8+ Лg5, в лучшем случае для белых – ничья.

27

Эта мысль была высказана британским генералом на три с четвертью столетия раньше, чем в наше время (когда она звучит уже угрозой самому существованию человечества) американским генералом Александром Хейгом в бытность его государственным секретарем в администрации президента Р. Рейгана. (Примеч. авт.)

28

В своем знаменитом «втором вызове» английским математикам в феврале 1657 года Пьер Ферма, предложив им решить указанное уравнение с названными коэффициентами, писал: «Я жду решения этих вопросов: если оно не будет дано ни Англией, ни Бельгийской или Кельтской Галлией, то это будет сделано Нарбоннской Галлией…» Уравнение это, получив название уравнения Пелля (без достаточных исторических оснований), теперь охотнее именуется уравнением Ферма, исследованное впоследствии Эйлером и окончательно проанализированное Лагранжем. (Примеч. авт.)

29

Швейцарская легенда повествует о необычайно метком стрелке, народном герое Вильгельме Телле, которого враги принудили сбить стрелой яблоко с головы любимого сына. (Примеч. авт.)

30

Переписка ученых, собранная Джоном Валлисом, вошла приложением к третьему тому сочинений Пьера Ферма на французском языке в 1679 году, выпущенных его сыном Самуэлем. (Примеч. авт.)

31

Это письмо к Каркави получило название «Завещание Ферма». (Примеч. авт.)

32

Примечание автора для особо интересующихся. Рассмотренный Паскалем «бином», впоследствии названный «биномом Ньютона», известен ныне как:

(x + y)0 = 1;

(x + y)1 = z;

(x + y)2 = x2 + 2xy + y2;

(x + y)3 = x3 + 3x2у + 3xy2 + y3;

(x + y)4 = x4 + 4x3y2 + 6x2y2 + 4xy3 + y4

и т. д.

33

В своем 42-м замечании на полях книги «Арифметика» Диофанта Пьер Ферма записал по-латыни: «…наука о целых числах, которая, без сомнения, является прекраснейшей и наиболее изящной, не была до сих пор известна ни Боше, ни кому-либо другому, чьи труды дошли до меня» (Боше де Мазариак – математик, издавший в переводе на латынь с древнегреческого «Арифметику» Диофанта, снабдив ее своими комментариями и дополнениями, ставшую настольной книгой Ферма). (Примеч. авт.)

34

Примечание автора для особо интересующихся.

Метод совмещенных парабол Пьера Ферма сводится к тому, что в системе прямоугольных координат (декартовых!) с горизонтальной осью x и вертикальной q – (x01q) – вычерчивается парабола по уравнению q = xn. Чертеж поворачивается на 180º, и на нем наносится (см. рис.) еще одна система прямоугольных координат (y01l) с горизонтальной осью «у» и вертикальной «l».

Вертикальные оси двух систем координат отстоят одна от другой на величину z, а горизонтальные на zn. В перевернутой системе координат тоже вычерчивается точно такая же парабола по уравнению l = yn. Две совмещенные таким способом параболы образуют полусимметричную геометрическую фигуру, ограниченную ими. Выбирая точку x1 на оси x, строим от нее вертикальный отрезок (до пересечения с первой построенной параболой) с длиной g1 = X1n. Проведя теперь горизонтальную линию от пересечения вертикального отрезка с параболой через фигуру до второй параболы, получим точку, вертикальный отрезок от которой до оси у перевернутой координатной системы отметим на оси y точку y1. Длина же этого отрезка, равная ординате перевернутой параболы, будет l = yn. Из построения следует: q + l1 = x1n + y1n = z1n. Диофантово уравнение, положенное Ферма в основу его Великой теоремы. Все это восстановлено А. Н. Кожевниковым.

35

Примечание автора для особо интересующихся. По просьбе автора вывод «бинома Ферма» выполнен заслуженным деятелем науки и техники РСФСР доктором технических наук профессором М. М. Протодьяконовым следующим образом. Из основной формулы xn + yn = zn и вышеприведенного рисунка следует: (A + B + C)n = (A + C)n + (B + C)n. После умножения обеих частей уравнения на множитель меньше единицы

после объединения одинаковых степеней, раскрытия малых скобок, очевидных сокращений и преобразований:

после сокр. прав. части

Обозначив через

получаем «Бином Ферма»: (A + B)n = (A + MB)n + (MA + B)n, может быть, несправедливо забытый современными математиками, но восстановленный А. Н. Кожевниковым.

36

Лишь Эйлер в следующем веке показал, что эта дробь, если «a» целое и неквадратное число, будет периодической. (Примеч. авт.)

(adsbygoogle = window.adsbygoogle || []).push({});
1 ... 77 78 79 80 81 82 83 84 85 86
Перейти на страницу:
На этой странице вы можете бесплатно скачать Том (7). Острие шпаги - Александр Казанцев торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергей
Сергей 24.01.2024 - 17:40
Интересно было, если вчитаться