- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Том (7). Острие шпаги - Александр Казанцев
Шрифт:
Интервал:
Закладка:
37
Задача эта сводится к выражению xn + yn = zn. (Примеч. авт.)
38
Великая теорема Ферма. (Примеч. авт.)
39
В 45-м замечании к книге Диофанта Ферма даст развернутое доказательство нерешаемости для четвертой степени уравнения: x4 + y4 = z4 в целых числах, к чему мы еще вернемся. Еще раньше, в 33-м замечании, говоря о Диофанте, Ферма написал: «Почему же он не ищет двух биквадратов, сумма которых равна квадрату? Конечно, потому, что эта задача невозможна, как это с несомненностью показывает наш метод доказательства». (Примеч. авт.)
40
Примечание автора для особо интересующихся.
Графическое решение «бинома Ньютона в третьей степени» представлено на рисунке, выполненном заслуженным деятелем науки и техники РСФСР доктором технических наук профессором М. М. Протодьяконовым. Куб у него складывается из кубов, среднего со стороной y и малого со стороной x, расположенных по диагонали большого куба, со стороной x + y, трех пластин объемом x2y и трех брусков объемом x2y, точно заполняющих оставшиеся в большом кубе места от двух первых кубов. Объемы всех этих фигур соответствуют: (x + y)3 = x3 + 3x2 y + 3xy2 + y3.
41
Примечание автора для особо интересующихся. «Метод спуска» Ферма изложен в его 45-м примечании к «Арифметике» Диофанта и в его письме к Каркави, где для доказательства того, что площадь прямоугольного треугольника не может быть равна квадрату целого числа, говорилось: «Если бы существовал некоторый прямоугольный треугольник в целых числах, который имел бы площадь, равную квадрату, то существовал бы другой треугольник, меньший этого, который обладал бы тем же свойством. Если бы существовал второй, меньший первого, который имел бы то же свойство, то существовал бы, в силу подобного рассуждения, третий, меньший второго, который имел бы то же свойство, и, наконец, четвертый, пятый, спускаясь до бесконечности. Но если задано число, то не существует бесконечности по спуску меньших его (я все время подразумеваю целые числа). Откуда заключаю, что не существует никакого прямоугольного треугольника с квадратной площадью».
Этим методом доказаны частные случаи для степеней = 3 и 4.
42
Примечание автора для особо интересующихся. «Метод подъема» гипотетически мог бы быть изложен так:
Если прямоугольный треугольник можно построить только на плоскости, имеющей два измерения, и свойством такого «плоского места» будет пифагоров закон о том, что квадрат гипотенузы равен сумме квадратов катетов, то нет оснований полагать, что подобные «законы» отражают свойства «пространственных» и «субпространственных мест» с тремя и более измерениями, что при переходе (подъеме) от плоскости к объему (кубу, параллелепипеду или другой пространственной фигуре) диагональ, скажем куба, возведенная в третью степень, будет равна сумме других отрезков, укладывающихся в эту фигуру (сторон куба) в третьей степени. И еще меньше оснований полагать, что при переходе к «невообразимым фигурам» четырех и больше измерений можно найти целочисленное решение для четвертой степени одного отрезка, равного сумме двух других отрезков в четвертых степенях каждый. Для необоснованности подобных предположений достаточно доказать, что целочисленных решений нет, скажем, для биквадратов, что и будет общим доказательством отсутствия целочисленных решений для «пространственных» и «субпространственных» фигур вообще.
Нерешаемость в целых числах уравнения с разложением числа в четвертой степени на два слагаемых в той же степени безупречно доказана Пьером Ферма с помощью его «метода спуска», а для третьей степени спустя столетие Эйлером. В наше время с помощью электронно-вычислительных машин доказана подобная нерешаемость для всех чисел до многих миллионов с показателями от 3 до 100 000, что, по мнению Ферма, доказывать уже не требовалось, поскольку для четвертой степени это доказано и для третьей степени тоже удалось доказать, подтвердив тем, что «вероятностные кривые Ферма» расходятся.
43
Математики, предполагающие, что Ферма ошибся в своем доказательстве Великой теоремы и она простыми средствами якобы недоказуема, могут отыскать «ошибку» и в приведенном здесь «гипотетическом» «методе подъема», учтя, однако, при этом как его «литературную условность», так и математическое значение упомянутых «вероятностных кривых», которые, очевидно, должны отражать поддающуюся экстраполяции закономерность. И не забыть при этом корректность практической проверки доказательства. (Прим. авт.)
44
Написан в содружестве с Марианом Сияниным.
45
Герловин И. Л. Некоторые вопросы систематизации элементарных частиц. – Труды Глав. астр, обсерватории АН СССР. Л., 1966.
46
Протодьяконов М. М. и Герловин И. Л. Электронное строение и физические свойства кристаллов. М., «Наука», 1975.
(adsbygoogle = window.adsbygoogle || []).push({});