Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Прочая научная литература » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон

Читать онлайн Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 78 79 80 81 82 83 84 85 86 ... 95
Перейти на страницу:

Вот с чем предстоит иметь дело. Если вы не математик, то перед вами — страшный монстрик (и где, кстати, в нем сидит дзета-функция?). Я собираюсь разобрать эту штуку на кусочки, один за другим, и показать, что творится у нее внутри. Но прежде всего сообщу, что это равенство и составляет основной результат статьи Римана 1859 года. Если вы сможете его одолеть, то поймете суть того, что сделал Риман в этой области, и получите ясное представление обо всем, что было после.

Первое, что надлежит заметить, — это что правая часть выражения (21.1) состоит из четырех частей, или членов. Первый член, Li(x), носит общее название главного члена. Про второй член, имеющий вид ∑ρLi(xρ), Риман говорил во множественном числе как о «периодических членах» (periodischer Gleider) — по причинам, которые вскоре выяснятся; мы будем говорить о нем в единственном числе как о «вторичном члене». Третий член в нашей формуле — дело нехитрое. Это просто число, ln 2, равное 0,69314718055994…

С четвертым членом, несмотря на страх, который он наводит на нематематиков, разобраться на самом деле несложно. Он представляет собой интеграл, т.е. площадь под кривой, описывающей некоторую функцию, причем площадь вычисляется от аргумента x и аж до самой бесконечности. Функция здесь — это, разумеется, 1/(t(t2 − 1)ln t). Нарисовав ее график (рис. 21.1), мы убеждаемся, что она очень даже отзывчива в отношении того, чего мы от нее хотим. Надо только помнить, что нас совершенно не волнуют значения аргументах, меньшие 2, поскольку J(x) равна нулю, когда x меньше двойки. Поэтому при x = 2 показанная на рисунке затемненная область — это максимальное значение, которого вообще может достигать этот интеграл (т.е. четвертый член в формуле). Площадь затемненной области, т.е. максимальное значение четвертого члена при любых x, которые вообще могут нас интересовать, составляет в действительности 0,1400101011432869….

Рисунок 21.1. Четвертый член в выражении Римана для J(x).

Таким образом, взятые вместе (с учетом знаков) третий и четвертый члены ограничены интервалом от −0,6931… до −0,5531…. Поскольку изучаемая нами функция π(x) по-настоящему интересна только для миллионов и триллионов, эффект от этих двух членов невелик, так что мы практически ничего не будем о них говорить, а сконцентрируемся на двух первых членах.

Главный член тоже не представляет особой проблемы. В главе 7.viii мы уже определили функцию Li(x) как площадь под кривой 1/ln t, измеряемую от нуля до x; мы также привели Теорему о распределении простых чисел (ТРПЧ) в виде π(N) ~ Li(N). В нашем главном члене x — вещественное число, а потому значение Li(x) можно взять из математических таблиц или же вычислить с помощью любой нормальной математической программы, типа Maple или Mathematica.[193]

Разобравшись таким образом с первым, третьим и четвертым членами в выражении (21.1), мы сфокусируемся на втором, имеющем вид ∑ρLi(xρ). В нем — корень происходящего, и дело тут нешуточное. Сначала я в общих чертах расскажу, что он означает и как он попал в выражение (21.1). А потом разберу его на части и покажу, почему он играет ключевую роль для понимания распределения простых чисел.

III.

Знак ∑ — это приглашение к тому, чтобы суммировать, т.е. складывать многое в одно. На множество, по которому производится суммирование, указывает маленькая буква ρ под знаком ∑. Эта буква — не латинская p, а ро — семнадцатая буква греческого алфавита, причем в данном случае она фигурирует в значении «корень».[194] Для вычисления этого вторичного члена надо сложить друг с другом Li(xρ) для всех корней, по очереди придавая букве ρ значение, равное каждому из корней. Что это, кстати говоря, за корни? Ясное дело, ведь это нетривиальные нули дзета-функции Римана!

Как же все эти нули попали в выражение для J(x)? Объяснить это я могу лишь в общих чертах. Вспомним выражение, которое мы, повернув Золотой Ключ, получили в главе 19:

Мы говорили, что у математиков есть способ обратить это выражение — вывернуть его наизнанку, т.е. выразить J(x) через дзета-функцию. Процедура обращения в действительности и длинна, и сложна; в большинстве из составляющих ее шагов задействована математика, выходящая за рамки того, что приводится в этой книге. Поэтому-то я и перескочил прямо к окончательному результату — выражению (21.1). Тем не менее, как мне кажется, я в состоянии объяснить одну часть этой процедуры. Дело в том, что один шаг в этом обращении заключается как раз в выражении дзета-функции через ее нули.

Сама по себе идея выражения функций через их нули не несет в себе особой новизны для тех, кто изучал алгебру в старших классах. Рассмотрим старые добрые квадратные уравнения, выбрав в качестве примера то, которое мы использовали в главе 17.iv, а именно z2 − 11z + 28 = 0 (однако будем писать букву z вместо x, поскольку сейчас мы находимся в царстве комплексных чисел). Левая часть этого уравнения, разумеется, представляет собой функцию, причем полиномиальную функцию (т.е. многочлен). Если мы подставим в нее любое значение аргумента z, то после выполнения определенных арифметических действий получим значение функции. А если, скажем, мы подставим аргумент 10, то значением функции будет 100 − 110 + 28, что дает 18. Если подставим аргумент i, то значением функции будет 27 − 11i.

А каковы решения уравнения z2 − 11z + 28 = 0? Как мы видели в главе 17, это 4 и 7. При подстановке любого из этих чисел в левую часть уравнение превращается в верное равенство, поскольку левая часть оказывается равной нулю. Другой способ выразить то же самое — это сказать, что 4 и 7 являются нулями функции z2 − 11z + 28.

Теперь, зная нули, мы можем разложить эту функцию на множители. Она разлагается на множители как (z − 4)(z − 7). По правилу знаков это можно записать и как (4 − z)(7 − z). Еще один способ записи — это 28(1 − z/4)(1 − z/7). Смотрите: так или иначе, мы выразили функцию z2 − 11z + 28 через ее нули! Разумеется, такое можно делать не только для квадратичных функций. Многочлен пятой степени z5 − 27z4 + 255z3 − 1045z2 + 1824z − 1008 тоже можно записать через его нули (каковыми являются числа 1, 3, 4, 7, 12). Вот как: −1008(1 − z/1)(1 − z/3)(1 − z/4)(1 − z/7)(1 − z/12). Любую полиномиальную функцию можно переписать через значения ее нулей.

Полиномиальные функции обладают интересным свойством с точки зрения теории функций комплексной переменной. Область определения полиномиальной функции составляют все комплексные числа. Полиномиальная функция никогда не «обращается в бесконечность». Нет такого значения аргумента z, при котором оказалось бы невозможным вычислить ее значение. При вычислении значения полиномиальной функции для любого заданного значения аргумента используются только возведение аргумента в положительные целые степени, умножение этих степеней на числа и сложение полученных результатов друг с другом. Такое можно проделать со всяким числом.

1 ... 78 79 80 81 82 83 84 85 86 ... 95
Перейти на страницу:
На этой странице вы можете бесплатно скачать Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон торрент бесплатно.
Комментарии