- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон
Шрифт:
Интервал:
Закладка:
Вот с чем предстоит иметь дело. Если вы не математик, то перед вами — страшный монстрик (и где, кстати, в нем сидит дзета-функция?). Я собираюсь разобрать эту штуку на кусочки, один за другим, и показать, что творится у нее внутри. Но прежде всего сообщу, что это равенство и составляет основной результат статьи Римана 1859 года. Если вы сможете его одолеть, то поймете суть того, что сделал Риман в этой области, и получите ясное представление обо всем, что было после.
Первое, что надлежит заметить, — это что правая часть выражения (21.1) состоит из четырех частей, или членов. Первый член, Li(x), носит общее название главного члена. Про второй член, имеющий вид ∑ρLi(xρ), Риман говорил во множественном числе как о «периодических членах» (periodischer Gleider) — по причинам, которые вскоре выяснятся; мы будем говорить о нем в единственном числе как о «вторичном члене». Третий член в нашей формуле — дело нехитрое. Это просто число, ln 2, равное 0,69314718055994…
С четвертым членом, несмотря на страх, который он наводит на нематематиков, разобраться на самом деле несложно. Он представляет собой интеграл, т.е. площадь под кривой, описывающей некоторую функцию, причем площадь вычисляется от аргумента x и аж до самой бесконечности. Функция здесь — это, разумеется, 1/(t(t2 − 1)ln t). Нарисовав ее график (рис. 21.1), мы убеждаемся, что она очень даже отзывчива в отношении того, чего мы от нее хотим. Надо только помнить, что нас совершенно не волнуют значения аргументах, меньшие 2, поскольку J(x) равна нулю, когда x меньше двойки. Поэтому при x = 2 показанная на рисунке затемненная область — это максимальное значение, которого вообще может достигать этот интеграл (т.е. четвертый член в формуле). Площадь затемненной области, т.е. максимальное значение четвертого члена при любых x, которые вообще могут нас интересовать, составляет в действительности 0,1400101011432869….
Рисунок 21.1. Четвертый член в выражении Римана для J(x).
Таким образом, взятые вместе (с учетом знаков) третий и четвертый члены ограничены интервалом от −0,6931… до −0,5531…. Поскольку изучаемая нами функция π(x) по-настоящему интересна только для миллионов и триллионов, эффект от этих двух членов невелик, так что мы практически ничего не будем о них говорить, а сконцентрируемся на двух первых членах.
Главный член тоже не представляет особой проблемы. В главе 7.viii мы уже определили функцию Li(x) как площадь под кривой 1/ln t, измеряемую от нуля до x; мы также привели Теорему о распределении простых чисел (ТРПЧ) в виде π(N) ~ Li(N). В нашем главном члене x — вещественное число, а потому значение Li(x) можно взять из математических таблиц или же вычислить с помощью любой нормальной математической программы, типа Maple или Mathematica.[193]
Разобравшись таким образом с первым, третьим и четвертым членами в выражении (21.1), мы сфокусируемся на втором, имеющем вид ∑ρLi(xρ). В нем — корень происходящего, и дело тут нешуточное. Сначала я в общих чертах расскажу, что он означает и как он попал в выражение (21.1). А потом разберу его на части и покажу, почему он играет ключевую роль для понимания распределения простых чисел.
III.Знак ∑ — это приглашение к тому, чтобы суммировать, т.е. складывать многое в одно. На множество, по которому производится суммирование, указывает маленькая буква ρ под знаком ∑. Эта буква — не латинская p, а ро — семнадцатая буква греческого алфавита, причем в данном случае она фигурирует в значении «корень».[194] Для вычисления этого вторичного члена надо сложить друг с другом Li(xρ) для всех корней, по очереди придавая букве ρ значение, равное каждому из корней. Что это, кстати говоря, за корни? Ясное дело, ведь это нетривиальные нули дзета-функции Римана!
Как же все эти нули попали в выражение для J(x)? Объяснить это я могу лишь в общих чертах. Вспомним выражение, которое мы, повернув Золотой Ключ, получили в главе 19:

Мы говорили, что у математиков есть способ обратить это выражение — вывернуть его наизнанку, т.е. выразить J(x) через дзета-функцию. Процедура обращения в действительности и длинна, и сложна; в большинстве из составляющих ее шагов задействована математика, выходящая за рамки того, что приводится в этой книге. Поэтому-то я и перескочил прямо к окончательному результату — выражению (21.1). Тем не менее, как мне кажется, я в состоянии объяснить одну часть этой процедуры. Дело в том, что один шаг в этом обращении заключается как раз в выражении дзета-функции через ее нули.
Сама по себе идея выражения функций через их нули не несет в себе особой новизны для тех, кто изучал алгебру в старших классах. Рассмотрим старые добрые квадратные уравнения, выбрав в качестве примера то, которое мы использовали в главе 17.iv, а именно z2 − 11z + 28 = 0 (однако будем писать букву z вместо x, поскольку сейчас мы находимся в царстве комплексных чисел). Левая часть этого уравнения, разумеется, представляет собой функцию, причем полиномиальную функцию (т.е. многочлен). Если мы подставим в нее любое значение аргумента z, то после выполнения определенных арифметических действий получим значение функции. А если, скажем, мы подставим аргумент 10, то значением функции будет 100 − 110 + 28, что дает 18. Если подставим аргумент i, то значением функции будет 27 − 11i.
А каковы решения уравнения z2 − 11z + 28 = 0? Как мы видели в главе 17, это 4 и 7. При подстановке любого из этих чисел в левую часть уравнение превращается в верное равенство, поскольку левая часть оказывается равной нулю. Другой способ выразить то же самое — это сказать, что 4 и 7 являются нулями функции z2 − 11z + 28.
Теперь, зная нули, мы можем разложить эту функцию на множители. Она разлагается на множители как (z − 4)(z − 7). По правилу знаков это можно записать и как (4 − z)(7 − z). Еще один способ записи — это 28(1 − z/4)(1 − z/7). Смотрите: так или иначе, мы выразили функцию z2 − 11z + 28 через ее нули! Разумеется, такое можно делать не только для квадратичных функций. Многочлен пятой степени z5 − 27z4 + 255z3 − 1045z2 + 1824z − 1008 тоже можно записать через его нули (каковыми являются числа 1, 3, 4, 7, 12). Вот как: −1008(1 − z/1)(1 − z/3)(1 − z/4)(1 − z/7)(1 − z/12). Любую полиномиальную функцию можно переписать через значения ее нулей.
Полиномиальные функции обладают интересным свойством с точки зрения теории функций комплексной переменной. Область определения полиномиальной функции составляют все комплексные числа. Полиномиальная функция никогда не «обращается в бесконечность». Нет такого значения аргумента z, при котором оказалось бы невозможным вычислить ее значение. При вычислении значения полиномиальной функции для любого заданного значения аргумента используются только возведение аргумента в положительные целые степени, умножение этих степеней на числа и сложение полученных результатов друг с другом. Такое можно проделать со всяким числом.

