- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон
Шрифт:
Интервал:
Закладка:
Что же можно сказать о таком списке? Это, конечно, не список простых чисел. Например, в него входит много четных чисел, но лишь одно простое число, 2, является четным. Так вот, если модель Крамера верна, то список будет статистически неотличим от списка простых чисел. Любое общее статистическое свойство, которым обладают простые числа, — скажем, сколь много их мы ожидаем найти в интервале определенной длины или степень их кластеризации (о которой Гильберт в формулировке восьмой проблемы говорил как о «конденсации») — будет присуще и полученному случайному списку.
Чтобы развить некоторую аналогию, рассмотрим десятичные разряды числа π. Насколько вообще известно, их последовательность совершенно случайна.[189] Они никогда не повторяются. И цифры, и пары цифр, и тройки цифр, и четверки цифр появляются с точно такой же частотой, которую даст чистый случай. Никому никогда не удавалось обнаружить какой-нибудь закон в миллиардах десятичных знаков числа π, которые в настоящее время доступны изучению. Десятичные знаки числа π — это случайная последовательность цифр… за тем единственным исключением, что они представляют именно число π! Так же обстоит дело и с простыми числами в модели Крамера. Они неотличимы от любой другой последовательности с частотой появления 1/ln N, и в этом смысле они полностью случайны… за исключением, конечно, того обстоятельства, что они простые!
В 1985 году Хельмут Майер доказал, что модель Крамера в том простом виде, как я ее обрисовал, не дает полной картины распределения простых чисел. Но некоторый модифицированный вариант модели приводит к правильным предсказаниям распределения простых чисел и при этом связан с Гипотезой Римана довольно хитрым и непрямым образом. Имеется скромная надежда, что дальнейшие исследования этого вопроса приведут к прогрессу в понимании ГР.[190]
VIII.И наконец, я не могу не упомянуть самый непрямой подход — подход в рамках недедуктивной логики. Строго говоря, это не математическая тема. Математика требует строгих логических доказательств для обоснования своих результатов. Однако большая часть мира устроена иначе. В обычной жизни мы действуем, исходя главным образом из вероятностей. В суде, на приеме у врача, при оформлении страховых полисов мы учитываем именно баланс вероятностей, а вовсе не исходим из железной определенности. Временами, конечно, для количественного выражения подобных вопросов мы пользуемся настоящей математической теорией вероятностей — именно по этой причине страховые компании берут на работу актуариев. Но гораздо чаще мы ее не используем, да и не можем использовать — представим себе хотя бы судебное разбирательство.
Математики порой бросали заинтересованный взгляд на эту сторону жизни. Джордж Пойа даже написал по этому поводу двухтомник[191], в котором он делает довольно неожиданное заявление, что недедуктивная логика больше ценится в математике, чем в естественных науках. Эту линию рассуждений совсем недавно продолжил австралийский математик Джеймс Фрэнклин. Его статья 1987 года «Недедуктивная логика и математика», опубликованная в British Journal for the Philosophy of Science, содержит раздел, озаглавленный «Свидетельства в пользу Гипотезы Римана и других гипотез».
Фрэнклин подходит к ГР так, как если бы она представляла собой дело, рассматривающееся в суде. Он приводит свидетельства в пользу справедливости Гипотезы Римана.
• Результат Харди 1914 года о том, что на критической прямой лежит бесконечно много нулей.
• Из ГР следует ТРПЧ, о которой известно, что она верна.
• «Вероятностная интерпретация Данжуа» — другими словами, рассмотренное выше рассуждение, основанное на подбрасывании монеты.
• Еще одна теорема 1914 года, которую доказали Ландау и Харальд Бор, согласно которой большинство нулей — все, кроме бесконечно малой доли, — очень близки к критической прямой. Стоит заметить, что коль скоро число нулей бесконечно, один триллион считается бесконечно малой долей.
• Алгебраические результаты Артина, А. Вейля и Делиня, упомянутые в главе 17.iii.
А теперь свидетельства со стороны обвинения.
• У самого Римана не было внятных причин для подкрепления своего утверждения в статье 1859 года о том, что ГР «очень правдоподобна», а полупричины, которые могли бы послужить мотивировкой его утверждения, с тех пор были опровергнуты.
• В 1970-х годах компьютерные расчеты показали, что на большой высоте вдоль критической прямой дзета-функция демонстрирует весьма своеобразное поведение (по-видимому, Фрэнклин не знает о работе Одлыжко).
• Результат Литлвуда 1914 года об остаточном члене Li(x) − π(x). Фрэнклин пишет: «Значимость открытия Литлвуда для Гипотезы Римана далеко не очевидна. Но оно в самом деле дает некоторые основания подозревать, что к Гипотезе Римана могут найтись очень крупные контрпримеры, хотя малые контрпримеры и отсутствуют». Насколько я понимаю, Фрэнклин рассуждает здесь по аналогии. «Для некоторых исключительно больших чисел остаточный член ведет себя плохо. Но он связан с нулями дзета-функции [см. главу 21 в этой книге]. Так что, вероятно, для очень больших T дзета-функция ведет себя плохо и имеет нули вне критической прямой».
Конечно, все это косвенные свидетельства. Однако их не следует сбрасывать со счетов просто как псевдофилософскую игру слов. Выводы, основанные на свидетельствах, могут способствовать получению весьма убедительных результатов, порой вопреки строго аргументированным математическим непреложностям. Рассмотрим, например, очень нематематическую ситуацию, когда гипотезу можно значительно ослабить с помощью подтверждающих ее свидетельств. Гипотеза: ни одно человеческое существо не может быть ростом выше девяти футов. Подтверждающее свидетельство: человек, рост которого 8 футов и 113/4 дюйма. Обнаружение такого индивида подтверждает гипотезу… и, однако, в то же время бросает на нее серьезную тень сомнения![192]
Глава 21. Остаточный член
I.В главе 19 мы определили ступенчатую функцию J, выразив ее через функцию π, которая подсчитывает для нас простые числа, а потом использовали мебиусово обращение, чтобы выразить π через J. Повернув затем Золотой Ключ, мы шаг за шагом прошли по тем вычислениям, с помощью которых Риман выразил дзета-функцию ζ через функцию J. А другое обращение, как я сказал, позволит выразить J через ζ. Сухой остаток всего этого таков.
• Функцию π, которая пересчитывает простые числа, можно выразить через другую ступенчатую функцию J.
• Функцию J оказывается возможным выразить через дзета-функцию Римана ζ.
Отсюда получается, что все свойства функции распределения простых чисел π некоторым образом закодированы в функции ζ. Достаточно тщательное исследование свойств функции ζ подскажет нам все, что мы хотим узнать про функцию π, другими словами, про распределение простых чисел.
Как же все это на самом деле работает? Какова программа действий? Где в ней найдется место тем самым нетривиальным нулям? И как выглядит этот «посредник» — функция J — когда он переписан через функцию ζ? Ответ на последний вопрос я замял в конце главы 19.
II.Я замял ответ на этот вопрос по вполне уважительной причине, которая сейчас станет ясной. Выражение (21.1) содержит результат этого второго обращения, окончательное и точное выражение функции J(x) через дзета-функцию:


