Геном: автобиография вида в 23 главах - Мэтт Ридли
Шрифт:
Интервал:
Закладка:
Переход от экспериментов с генетически модифицированными растениями к реальному использованию не всегда проходил гладко. Иногда гены в полевых условиях отказывались работать. Так, в 1996 году хлопковый долгоносик уничтожил посевы генетически модифицированного хлопка, который должен был быть устойчивым к этому вредителю. Иногда посевы уничтожали сторонники воинствующих экологических организаций. Но ни разу выращивание подобных растений не принесло ущерба людям или окружающей среде. Особо острая полемика относительно безопасности генетической модификации растений велась в Европе. В частности, в Англии, где репутация организаций, отвечающих за безопасность продуктов питания, уже была подмочена эпидемией «коровьего бешенства», генетически модифицированные растения попали под запрет, хотя в США их использование в конце 1990-х годов стало уже повсеместной практикой. Масло в огонь подлили события вокруг компании Monsanto, которая занялась разработкой растений, устойчивых к их собственному гербициду сплошного действия «Раундап». Это позволяло фермерам использовать «Раундап» для борьбы с сорняками на полях, засеянных генетически модифицированными сельскохозяйственными растениями. Такая комбинация «противоестественных манипуляций над природой» с расширением применения гербицидов в сочетании с ростом доходов транснациональной корпорации довела «зеленых» до точки кипения. Экотеррористы по всей Европе стали уничтожать посадки генетически модифицированного рапса и устраивать шествия в костюмах Франкенштейна. Борьба с распространением подобных растений и продуктов из них стала одним из трех основных направлений активности Greenpeace.
Журналисты быстро подхватили горячую тему и поляризовали ее до крайности с помощью многочисленных ток-шоу, где неподготовленным зрителям предлагалось ответить на вопрос: «Вы против генной инженерии или хотите жить среди монстров?». Из-за вмешательства прессы и телевидения вынужден был подать в отставку ученый, занимающийся моделированием генетически модифицированного картофеля. (Позже этот ученый стал одним из организаторов Friends of the Earth.) Вышла в свет научная публикация о том, что картофель, содержащий ген белка лектина, токсичен для лабораторных крыс. За научной публикацией последовала истеричная телепередача на тему токсичности генетически модифицированных растений для всего живого. Журналисты не уловили сути научной проблемы. В статье шла речь о токсичности лектинов, а не об опасности генной инженерии. Добавление мышьяка в котел делает пищу ядовитой, но это не значит, что готовка пищи в котле опасна для здоровья.
Автор, вероятно имеет в виду статью Ewen S., Pusztai A. 1999. Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine. The Lancet 354: 1353–1354.
Friends of the Earth (Друзья Земли) — английская общественная организация, цель которой — поиск экологичных решений техногенных, продуктовых и энергетических проблем, стоящих перед человечеством (www.foe.co.uk).
Генетическая инженерия настолько безопасна, насколько безопасны гены, с которыми манипулируют ученые. Одни гены безопасны, другие опасны. Одни экологически «зеленые», другие токсичные. Устойчивый к «Раундапу» рапс может представлять косвенную экологическую опасность, поскольку его выращивание поощряет широкое использование химических гербицидов. Кроме того, есть опасность, что ген устойчивости к гербициду передастся сорнякам. Напротив, устойчивый к колорадскому жуку картофель экологичен, поскольку позволяет отказаться от ядохимикатов и сократить применение техники и расход горючего для регулярной обработки растений. Противники использования генетически модифицированных растений в большей степени движимы неприятием новых технологий, чем любовью к экологии. Они упорно не хотят замечать результаты тысячи проведенных экспериментов, подтвердивших безопасность таких растений как для человека, так и для природы. Они пропускают мимо ушей отчеты о последних научных открытиях, свидетельствующие о том, что горизонтальный перенос генов между видами является обычным явлением не только для микроорганизмов, но и для животных с растениями. Поэтому в принципах, положенных в основу генной инженерии, нет ничего «противоестественного». Задолго до появления современных генетических методов селекционеры подвергали семена растений воздействию гамма-излучения, чтобы повысить частоту мутаций и отобрать образцы с новыми генетически закрепленными признаками. Борцы за экологию не хотят признавать, что генетическая модификация растений позволяет отказаться от повсеместного использования химических препаратов, обеспечивая естественную устойчивость растений к насекомым-вредителям и гнилостным бактериям. Кроме того, повышение урожайности само по себе экологично, поскольку ослабляет влияние антропогенных факторов на природу.
Политизация научных вопросов ведет к абсурдным решениям. В 1992 году одна из крупнейших в мире селекционных компаний Pioneer разработала генетически модифицированную сою, добавив в нее ген бразильского ореха. Цель заключалась в том, чтобы сделать бобы сои более полезными для тех людей, для которых соя является основным продуктом питания. Задача состояла в том, чтобы устранить в сое природный дефицит важной аминокислоты, метионина. Но вскоре стало известно, что у мизерного процента людей в мире бразильский орех вызывает аллергию. Специалисты компании Pioneer проверили генетически модифицированную сою и обнаружили, что она тоже может быть аллергеном. Научный доклад компании пробудил чиновников, которые немедленно запретили дальнейшие работы над проектом, несмотря на то, что расчеты показывали минимальную вероятность гибели человека от анафилактического шока, тогда как сотни тысяч людей были бы спасены от проблем, связанных с несбалансированным питанием. Эта история, вместо того чтобы стать примером чрезмерной активности бюрократов, была растиражирована «борцами за экологическую чистоту» как пример потенциальной опасности генетической модификации растений.
Несмотря на то что многочисленные научные проекты попали под запрет чиновников, в 2000 году в США более 50% урожая было получено от генетически модифицированных растений. Неизвестно — к счастью или к несчастью, но генная инженерия стала повседневной практикой.
В генетической модификации животных тоже наметился прогресс. Сейчас добавить ген в организм животного, так чтобы он наследовался в следующих поколениях, стало почти настолько же просто, как модифицировать геном растения. Для этого нужно выделить необходимый ген; поместить его в носик очень тонкой пипетки; под микроскопом проткнуть яйцеклетку мыши, извлеченную в течение 12 часов после оплодотворения; нацелить носик пипетки на одно из двух проядрышек и впрыснуть содержимое пипетки. Техника далека от совершенства. Только у 5% мышат нужный ген окажется включенным, а у других животных, таких как коровы, процент успеха еще ниже. Но у 5% генетически модифицированных мышат новый ген окажется встроенным в одну из хромосом.
Генетически модифицированные мыши для ученых — все равно что золотой песок для старателей. Методом генетической модификации мышей исследователи просеивают гены и пытаются разобраться, для какой цели служит тот или иной ген. Новый ген можно взять не только от другой мыши, но практически от любого организма. В отличие от компьютеров, для которых необходимо конкретное программное обеспечение, любой ген можно запустить на воспроизведение в любом организме. Так, было обнаружено, что линию мышей с высокой частотой появления раковых опухолей можно вернуть к норме, если добавить в геном мыши хромосому 18 из генома человека. Это открытие было первым доказательством того, что на хромосоме 18 сконцентрированы многие гены-супрессоры. Теперь осталось профильтровать гены хромосомы 18 на мышах, чтобы определить, какие именно гены ответственны за устойчивость к онкологическим заболеваниям.
Микроинъекции генетического материала позволили ученым разработать новый, более совершенный метод генетических модификаций, с помощью которого можно точечно изменять отдельные гены. Для такой генетической модификации часто используются стволовые клетки трехдневных эмбрионов. В 1988 году Марио Капекки (Mario Capecchi) обнаружил, что если добавить в такую клетку измененный ген, то он будет встроен в хромосому по месту нахождения копии этого гена, заменив собой тот ген, который был на хромосоме. Капекки брал нормальный онкоген мыши int-2 и добавлял его методом электропорации в стволовую клетку, взятую от мыши с дефектным онкогеном. Затем ученый определял, заменит ли нормальный ген своего дефектного двойника на хромосоме. Этот метод называется «гомологической рекомбинацией». В методе используются естественные механизмы репарации поврежденной ДНК. Когда репаративные белки обнаруживают дефект на хромосоме, они используют в качестве шаблона аналогичный ген на другой хромосоме и заменяют дефектный ген нормальной копией. Если в ядро добавляются фрагменты ДНК с измененной версией гена, то репаративные белки по ошибке воспринимают их как шаблоны и копируют в соответствующие позиции на хромосомах. Генетически измененная стволовая клетка затем вновь помещается в эмбрион. В результате получается «химерный» организм, в котором часть клеток содержат измененный ген[178].