Общая химия - Николай Глинка
Шрифт:
Интервал:
Закладка:
Протонная теория кислот и оснований рассматривает гидролиз как частный случай кислотно-основного равновесия: протон переходит от молекулы воды к данному иону или от данного иона к молекуле воды.
- 255 -
Например, гидролиз иона аммония можно выразить уравнением:
Глава IX. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ. ОСНОВЫ ЭЛЕКТРОХИМИИ
93. Окисленность элементов.
Когда элемент находится в свободном состоянии — образует простое вещество, тогда движение электронов около всех атомов этого вещества происходит одинаково. Это справедливо для всех простых веществ, независимо от их структуры. Например, в молекуле водорода электроны в равной мере движутся около обоих атомов: молекула H2 неполярна. В случае кристаллов с ковалентной связью химические связи между атомами также симметричны относительно связуемых атомов. В случае металлов распределение как связанных, так и свободных электронов в среднем также является равномерным.
Иначе обстоит дело в сложных веществах. Химические связи между атомами различных элементов несимметричны; в молекулах сложных веществ осуществляются, как правило, полярные ковалентные связи. В ионных соединениях эта неравномерность распределения электронов максимальна — при образовании веществ с ионной связью валентные электроны практически полностью переходят от атома одного элемента к атому другого.
Неравномерность распределения электронов между атомами в соединениях получила название окислен пост и. При этом элемент, электроны которого смещаются к атомам другого элемента (полностью в случае ионной связи или частично в случае полярной), проявляет положительную окисленность. Элемент, к атомам которого смещаются электроны атома другого элемента, проявляет отрицательную окисленность.
Число электронов, смещенных от одного атома данного элемента (при положительной окисленности) или к одному атому данного элемента (при отрицательной окисленности), называется степенью окисленности элемента.
В простых веществах степень окисленности элемента всегда равна нулю. В соединениях некоторые элементы проявляют всегда одну и ту же степень окисленности, но для большинства элементов она в различных соединениях различна.
Постоянную степень окисленности имеют щелочные металлы (+1) щелочноземельные металлы (+2), фтор (-1). Для водорода в большинстве соединений характерна степень окисленности +1 а в гидридах металлов (§ 116) некоторых других соединениях она равна —1.
- 256 -
Степень окисленности кислорода, как правило, равна —2; к важнейшим исключениям относятся пероксидные соединения, где она равна —1, и фторид кислорода OF2, в котором степень окисленности кислорода равна +2. Для элементов с непостоянной степенью окисленности ее значение всегда нетрудно подсчитать, зная формулу соединения и учитывая, что сумма степеней окисленности всех атомов в молекуле равна нулю.
Определим в качестве примера степень окисленности углерода в СО, CO2, CH4, C2H6, C2H5OH. Обозначим ее через x. Тогда, помня, что степень окисленности водорода равна +1, а кислорода —2, получим:
Для установления степени окисленности элементов в соединениях можно пользоваться таблицей электроотрицательностей элементов (табл. 6). При этом следует иметь в виду, что при образовании химической связи электроны смещаются к атому более электроотрицательного элемента. Так, относительная электроотрицательность фосфора равна 2,2, а иода 2,6. Поэтому в соединении PI3 общие электроны смещены к атомам иода и степени окисленности фосфора и иода равны соответственно +3 и -1. Однако в нитриде иода NI3 степени окисленности азота и иода равны —3 и +1, поскольку электроотрицательность азота (3,07) выше электроотрицательности иода.
94. Окислительно-восстановительные реакции.
Все химические реакции можно разбить на две группы. В реакциях первой группы окисленность всех элементов, входящих в состав реагирующих веществ, остается неизменной, а в реакциях второй группы окисленность одного или нескольких элементов изменяется.
В качестве примера реакций первой группы можно привести реакцию нейтрализации:
Примером реакции второй группы может служить взаимодействие металла с кислотой:
Если при реакции нейтрализации ни один элемент не изменяет степень своей окисленности, то во втором примере степень окисленности цинка изменяется от 0 до +2, а водорода — от +1 до 0.
Реакции, в результате которых изменяются степени окисленности элементов, называются окислительно-восстановительными.
- 257 -
Окислительно-восстановительные реакции имеют очень большое значение в биологических системах. Фотосинтез, дыхание, пищеварение — все это цепи окислительно-восстановительных реакций. В технике значение окислительно-восстановительных реакций также очень велико. Так, вся металлургическая промышленность основана на окислительно-восстановительных процессах В ходе которых металлы выделяются из природных соединений.
Простым примером окислительно-восстановительной реакции может служить реакция образования ионного соединения из простых веществ, например, взаимодействие натрия с хлором:
Эта реакция, как всякая гетерогенная реакция, протекает в несколько стадий. В ходе одной из них атомы натрия превращаются в положительно заряженные ионы; степень окисленности натрия изменяется от 0 до +1:
Такой процесс — отдача электронов, сопровождающаяся повышением степени окисленности элемента, - называется окислением.
Электроны, отдаваемые натрием, принимаются атомами хлора, которые превращаются при этом в отрицательно заряженные ионы; степень окисленности хлора изменяется от 0 до —1:
Присоединение электронов, сопровождающееся понижением степени окисленности элемента, называется восстановлением.
Таким образом, в рассматриваемой реакции натрий окисляется, а хлор восстанавливается.
Вещество, в состав которого входит окисляющийся элемент, называется восстановителем, а вещество, содержащее восстанавливающийся элемент, окислителем, Следовательно, в данном примере натрий — восстановитель, а хлор — окислитель.
Из уравнений процессов восстановления и окисления видно, что одна молекула хлора, восстанавливаясь, присоединяет два электрона, а окисление одного атома натрия сопровождается отдачей одного электрона. Общее число электронов в системе при химических реакциях не изменяется: число электронов, отдаваемых молекулами (атомами, ионами) восстановителя, равно числу электронов, присоединяемых молекулами (атомами, ионами) окислителя. Поэтому одна молекула хлора может окислить два атома натрия.
95. Составление уравнений окислительно-восстановительных реакций.
В § 94 мы рассмотрели простейший пример окислительно-восстановительной реакции — образование соединения из двух простых веществ. Обычно уравнения окислительно-восстановительных реакций носят более сложный характер и расстановка коэффициентов в них часто представляет довольно трудную задачу; приведем несколько примеров.
- 258 -
Пример 1. Взаимодействие между иодоводородом и концентрированной серной кислотой. Эта реакция протекает согласно схеме:
Если мы подсчитаем степень окисленности каждого элемента в исходных веществах и в продуктах реакции, то увидим, что она изменяется у иода и у серы. У иода в HI она равна —1, а в свободном иоде 0. Степень же окисленности серы изменяется от +6 (в H2SO4) до —2 (в H2S). Таким образом, степень окисленности иода повышается, а серы — понижается. Следовательно, иод окисляется, а сера восстанавливается.
Уравнение процесса окисления иода имеет простой вид:
Уравнение восстановления серы более сложно, так как и исходное вещество (H2SO4 или SO42-), и продукт реакции (H2S) кроме серы содержат другие элементы. При составлении этого уравнения будем исходить из того, что реакция протекает в кислой водной среде, а ион SO42- превращается в молекулу H2S:
Четыре атома кислорода, высвобождающиеся при этом процессе, должны связаться в четыре молекулы воды. Для этого понадобятся восемь ионов водорода. Кроме того, два иона водорода необходимы для образования молекулы H2S. Следовательно, с ионом SO42- должны взаимодействовать десять ионов водорода:
Суммарный заряд ионов, находящихся в левой части этой схемы, равен восьми элементарным положительным зарядам, а в правой ее части имеются лишь незаряженные частицы. Поскольку суммарный заряд в ходе процесса не изменяется, то, следовательно, в процессе восстановления принимают участие также восемь электронов: