Описание языка PascalABC.NET - W Cat
Шрифт:
Интервал:
Закладка:
Напомним, что программу-заготовку для решения этого задания можно создать с помощью команды меню Модули | Создать шаблон программы", кнопки или клавиатурной комбинации Shift+Ctrl+L. Приведем текст созданной заготовки:
uses PT4;
begin
Task('Tree2');
end.
После запуска программы на экране появится окно задачника:
Это окно содержит в качестве исходных и результирующих данных новые элементы: бинарные деревья и указатели.
Начнем с описания того, как отображается на экране дерево. Для его вывода используется несколько экранных строк. На каждой строке изображаются вершины дерева, находящиеся на определенном уровне (номер уровня указывается слева от изображения дерева). Для каждой вершины выводится ее значение, т. е. значение поля Data соответствующей записи типа TNode. Любая вершина соединяется линиями со своими дочерними вершинами, расположенными на следующем уровне дерева; левая дочерняя вершина изображается слева от родительской вершины, а правая -- справа. Отсутствие у вершины одной или обеих дочерних вершин означает, что ее поля Left и/или Right равны nil.
Рассмотрим в качестве примера дерево, приведенное на рисунке. Корень этого дерева имеет значение 15, левая дочерняя вершина корня равна 58, правая дочерняя вершина равна 42, глубина дерева равна 4. Все листья дерева находятся на уровнях 3 и 4; листья на уровне 3 имеют значения 15 и 11, листья на уровне 4 -- значения 38 и 84. Некоторые из внутренних вершин дерева имеют по две дочерние вершины (это корень и вершины со значениями 55 и 20), некоторые по одной: левой (вершины 42, 87 и 60) или правой (вершина 58).
Поскольку это дерево указано в разделе исходных данных, следовательно, после инициализации задания оно уже существует и размещается в некоторой области динамической памяти. Для доступа к данным, размещенным в динамической памяти, необходимо знать их адрес, поэтому в любом задании на обработку деревьев в набор исходных данных входят указатели, содержащие адреса каких-либо вершин этих деревьев (как правило, указывается адрес корня дерева).
Работа с исходными и результирующими данными типа указателя подробно обсуждается в разделе, посвященном линейным динамическим структурам.
Решение задачиВ задании Tree2 не требуется ни создавать, ни преобразовывать исходное дерево; его необходимо лишь проанализировать, а именно определить количество его вершин.
Для выполнения этого задания, как и для подавляющего большинства других заданий на обработку деревьев, следует воспользоваться вспомогательной рекурсивной подпрограммой (функцией или процедурой). Рекурсивная природа алгоритмов, связанных с обработкой деревьев (в частности, бинарных деревьев), объясняется тем, что сами определения деревьев общего вида и бинарных деревьев являются рекурсивными. Так, дать словесное описание функции NodeCount(P), подсчитывающей число вершин дерева с корнем, с которым связан указатель P, можно следующим образом: если указатель P равен nil, то следует вернуть значение 0; в противном случае следует вернуть значение 1 + NodeCount(P^.Left) + NodeCount(P^.Right) (в этом выражении первое слагаемое соответствует корню дерева, второе -- его левому поддереву, а третье -- его правому поддереву; при этом не требуется проверять, что указанные поддеревья существуют, так как при их отсутствии соответствующее слагаемое просто будет равно нулю).
Таким образом, решение задачи будет иметь следующий вид:
uses PT4;
function NodeCount(P: PNode): integer;
begin
if P = nil then
result := 0
else
result := 1 + NodeCount(P^.Left) + NodeCount(P^.Right);
end;
var P1: PNode;
begin
Task('Tree2');
read(P1);
write(NodeCount(P1));
end.
Цепочка рекурсивных вызовов функции NodeCount завершается при достижении терминальной вершины (листа), у которой поля Left и Right равны nil. Благодаря наличию функции NodeCount, раздел операторов программы является очень кратким: в нем считывается адрес P1 корня исходного дерева, после чего вызывается функция NodeCount(P1), возвращаемое значение которой сразу выводится процедурой write.
Запустив эту программу пять раз, мы получим сообщение Задание выполнено!".
Пример 2. Бинарные деревья с обратной связьюРассмотренная выше реализация бинарных деревьев позволяет легко переходить от родительских вершин к их дочерним вершинам, но не допускает обратного перехода. В то же время, для некоторых задач, связанных с обработкой деревьев, возможность обратного перехода от потомков к их предку позволяет получить более простое решение. Ясно, что для обеспечения возможности обратного перехода каждую вершину дерева надо снабдить еще одним полем связи, в котором должна храниться ссылка на ее родительскую вершину. Это поле связи естественно назвать Parent. Поскольку корень дерева предка не имеет, его поле Parent должно быть равно nil.
Деревья, вершины которых содержат информацию о своих родителях, будем называть деревьями с обратной связью. Особенности работы с подобными деревьями рассмотрим на примере задания Tree49.
Tree49°. Дан указатель P1 на корень дерева, вершинами которого являются записи типа TNode, связанные между собой с помощью полей Left и Right. Используя поле Parent записи TNode, преобразовать исходное дерево в дерево с обратной связью, в котором каждая вершина связана не только со своими дочерними вершинами (полями Left и Right), но и с родительской вершиной (полем Parent). Поле Parent корня дерева положить равным nil.
Запустив программу-заготовку, созданную для задания Tree49, мы увидим в области исходных данных изображение обычного" бинарного дерева, в то время как в области результатов будет изображено дерево с обратной связью, вершины которого связаны не одинарными, а двойными линиями.
Обратите также внимание на то, что в области результатов отсутствуют какие-либо данные, кроме измененного дерева. Это означает, что в программе, решающей задачу, не требуется использовать процедуры вывода; достаточно лишь преобразовать исходное дерево требуемым образом. Поскольку при таком преобразовании адрес корня дерева P1 не изменится, задачник сможеть получить доступ к этому дереву и проверить его правильность.
Для преобразования исходного дерева в дерево с обратной связью необходимо задать правильные значения для полей Parent всех вершин дерева, перебирая эти вершины с помощью подходящей рекурсивной процедуры. В эту процедуру удобно передавать в качестве параметров не только указатель P на текущую вершину, но и указатель Par на предка этой вершины:
uses PT4;
procedure SetParent(P, Par: PNode);
begin
if P = nil then
exit;
P^.Parent := Par;
SetParent(P^.Left, P);
SetParent(P^.Right, P);
end;
var P1: PNode;
begin
Task('Tree49');
read(P1);
SetParent(P1, nil);
end.
При стартовом запуске рекурсивной процедуры SetParent в качестве второго параметра указывается nil.
Примечание. Обозначение для двойной связи может оказаться полезным при анализе ошибочного решения. Так, если в изображении дерева с обратной связью имеется вершина, соединенная со своей родительским вершиной не двойной, а одинарной линией, значит, у этой вершины поле Parent содержит ошибочное значение (например, равно nil).
Пример 3. Деревья общего видаС помощью связанных записей типа TNode можно моделировать не только бинарные деревья, но и произвольные упорядоченные деревья, вершины которых имеют любое число непосредственных потомков (будем называть такие деревья деревьями общего вида; для них также используется название деревья с множественным ветвлением"). Рассмотрим задание Tree86 -- первое из заданий, связанных с деревьями общего вида, в котором описываются особенности подобных деревьев.
Tree86°. Дерево общего вида (каждая вершина которого может иметь произвольное число дочерних вершин, расположенных в фиксированном порядке в направлении слева направо) реализуется с помощью набора связанных записей типа TNode следующим образом: для каждой внутренней вершины ее поле Left содержит указатель на ее первую (т. е. левую) дочернюю вершину, а поле Right -- указатель на ее правую сестру, т. е. вершину, имеющую в дереве общего вида того же родителя. Поле Right корня дерева общего вида всегда равно nil, так как корень сестер не имеет. Дан указатель P1 на корень непустого бинарного дерева. Создать дерево общего вида, соответствующее исходному бинарному дереву, и вывести указатель P2 на его корень.