Концепции современного естествознания - Вардан Торосян
Шрифт:
Интервал:
Закладка:
Неслучайно огромную известность приобрела книга нобелевского лауреата С. Вайнберга «Первые три минуты» (после взрыва). Не менее характерно, что когда Дж. Гамова (1904–1968), одного из авторов «расширяющейся вселенной», спросили, а что же было до большого взрыва, он напомнил ответ Св. Августина на вопрос, чем же занимался Бог до шести дней творения – готовил ад для тех, кто осмелится задать такой вопрос. Современная наука все более задается такими адскими вопросами, и именно поиски ответов на них составляют ее прогресс. Так, в своей нобелевской речи биолог Ф. Крик, открывший структуру РНК и ДНК – молекул генетического кода, сообщил, что этого успеха он достиг потому, что еще в ранней молодости отделил вопрос об их структуре от вопроса, почему она именно такая. Читатель догадался, что такой вопрос задали уже ученики Ф. Крика!
Современное естествознание имеет дело с ветвящимися мирами, гиперскоростями, исчезающе малыми величинами, виртуальными частицами. Хотя наука ориентирована на предметное и объективное исследование реальности (включая в это исследование объекты, которые могут стать предметом практического освоения только в будущем), в ней приходится иметь дело с объектами, не сводимыми к наглядным предметам обыденного опыта.
Целый ряд объектов исследования естественных наук является теоретическими конструктами, не имеющими реальных прототипов и даже аналогов. Подобная ситуация издавна знакома естествознанию, но при введении, скажем, понятий идеального газа, абсолютно упругого удара или абсолютно черного тела предполагалось, что, хотя таковых не существует в природе, но эти идеализации отталкиваются от реальных аналогов, идеализируя, выделяя те или иные их особенности для разностороннего исследования. В эпоху классического естествознания ученый был убежден в реальном существовании теплорода, флогистона, эфира, хотя и сознавал, что, скажем, теплород не обязательно должен быть жидкостью с приписываемыми ей свойствами, обеспечивающими перенос тепла. Именно поэтому буквально трагедией оказался для ученых классической формации вывод опыта Майкелсона-Морли (1881 г.) о том, что эфир попросту не существует (после того, как он прослужил в течение нескольких веков в качестве исключительно полезного теоретического конструкта).
Даже после поучительных уроков, связанных с крахом механико-математических представлений, ученые, приученные к соответствующему стилю мышления, продолжали стремиться к наглядным моделям (так, яркий пример – планетарная модель атома Резерфорда, сменившаяся затем моделью Зоммерфельда – Бора, где электроны, вращаясь по орбитам вокруг ядра, могли уже перескакивать с одной орбиты на другую, испуская или поглощая квант энергии). Признания же, что они вовсе не вращаются по орбитам, а лишь меняют свой энергетический уровень, и по сей день не встретить в учебниках физики (во всяком случае, школьных). Опять же к этому надо относиться с пониманием, оправдывая естественностью стремления к наглядности. Но что сказать о виртуальных частицах, появившихся в физике уже в первой половине века (задолго до модной сейчас виртуальной реальности) – вопрос о реальности или нереальности их существования покажется современному физику столь же неуместным и невежественным, как пресловутый вопрос о конях спереди или сзади локомотива. Получается так, что сам вопрос о реальности шаг за шагом сменяется, замещается вопросом о допустимости или недопустимости тех или иных конструктов в той или иной теории.
Особенности объектов естественнонаучных теорий делают недостаточными те средства, которые применяются в обыденном познании. Прежде всего сказанное относится к языку науки, все более специализирующемуся по мере ее развития. Становится неизбежным особый понятийный аппарат, включающий такие понятия, как «странность» или «очарование» – со строгим научным статусом и вполне конкретным содержанием, в них вкладываемым. Наряду со специализированным языком естествознание все более нуждается в развитии особых средств и методов исследования, как теоретических, так и экспериментальных. Развитие естественных наук неоднократно приводило к созданию специального математического аппарата (логарифмы в эпоху Кеплера, дифференциальное и интегральное исчисление у Декарта и Лейбница, тензорный анализ – новый раздел математики, который потребовался Эйнштейну для создания общей теории относительности и был создан по его просьбе коллегой – математиком).
Специфика современного наблюдательного и экспериментального естествознания связана прежде всего с быстрыми изменениями исследуемых состояний, недоступностью объектов, неоднозначностью в интерпретации опытных результатов, их теоретической нагруженностью (то есть зависимостью от теории, на основе которой ставится опыт). Эти проблемы решаются также по-разному. Хорошо известен пример Архимеда, который смог установить наличие примесей в золотой короне (которую, конечно, нельзя было распиливать) гениально просто – по объему вытесненной жидкости. Вопреки легенде о ядрах, бросаемых Галилеем с пизанской башни, он в этом не нуждался (да и ничего бы это ему не дало, при том уровне измерительной техники). Сыграв в остроумную игру с природой, он судил об ускорении по количеству жидкости, вытекающей по желобам при различном наклоне (см. гл. 6). По крайней мере к XVII в. относятся свидетельства о создании на Земле такой «приборной ситуации», в которой для измерения скорости света (Олаф Рёмер) использовалось другое небесное тело (спутник Юпитера), отражавшее свет.
Широко используется в естественнонаучных исследованиях мысленный эксперимент, моделирующий ситуацию, невоспроизводимую в реальном эксперименте («демон» Максвелла, мысленный эксперимент М. Смолуховского; мысленные эксперименты А. Эйнштейна и Н. Бора, составившие основу их многолетнего научного спора и столь способствующие развитию всего неклассического естествознания). В последние годы разработана остроумная методика исследования даже таких «принципиально недоступных» наблюдательному изучению объектов, как «черные дыры» – по аномальному поведению излучения других тел в «окрестностях» предполагаемых «дыр». В исследованиях сверхплотных объектов, сверхнизких и сверхвысоких температур, в космологических теориях все более используются косвенные аспекты критерия практики, связанные с внутритеоретическими достоинствами конкурирующих теорий, с сохранением результатов теории при переходе к новой, более объемлющей теории, и так далее. Системный характер знания обеспечивает перенос истинности знания с одних фрагментов природы на другие, объединение уже «обкатанных» идеальных конструктов, без непосредственного обращения к практической проверке (например, унификация земных и небесных движений Галилем после открытия Коперника, исследования химического состава космических тел по спектральному анализу их излучения).
Надо заметить, что даже использование научных результатов в производстве и обыденном опыте отнюдь не является исчерпывающим или хотя бы достаточно убедительным доказательством их истинности, адекватности реальности, проникновения в сущность исследуемых явлений. Так, эффективность известного в Средневековье снадобья от головной боли из орехов объяснялась симпатией различных веществ, симпатией и антипатией различных элементов объяснялись результаты алхимических опытов (безусловно, несущих в себе ценное ядро, легшее затем в основу химии).
Требование к любому научному знанию – не только выявлять, как устроен мир, но и объяснять, почему он устроен именно так, с соответствующими химическими элементами, физическими константами и так далее. Это требование, отчетливо сформулированное И. Кеплером еще четыре века назад (а в античности – пифагорейцами), по существу, было повторено в наше время Эйнштейном, убежденным, как и Декарт, Ньютон, Бойль, что «Бог изощрен, но не злонамерен», позволяя познавать свое творение пытливому и истовому исследователю. Рассмотренные особенности научного знания определяют его строение и характер взаимосвязи структурных уровней. В научном знании выделяются два основных уровня, эмпирический и теоретический, которым соответствуют два взаимосвязанных, но в то же время специфических вида познавательной деятельности – эмпирическое и теоретическое исследование.
Вопрос об их соотношении имеет длительную предысторию, восходя к античности и приняв особен- но принципиальный характер в естествознании XVII–XVIII в.в., когда он был отнесен к проблеме самих начал научного познания (см. гл. 6). Именно с этого периода сложилось довольно устойчивое заблуждение, когда категории «эмпирическое» и «теоретическое» отождествляют с категориями «чувственное» и «рациональное» (от лат. ratio – разум).
Выделяя эмпирический и теоретический уровни научного познания, современный исследователь отдает себе отчет в том, что если в обыденном познании правомерно различать чувственный и рациональный уровни (хотя опять же не фетишизируя их различия), то в научном познании эмпирический уровень исследования никогда не ограничивается чисто чувственным знанием; точно так же теоретическое знание не представляет собой чистую рациональность. Даже первичный слой эмпирических знаний – данные наблюдений – всегда фиксируется в определенном языке, который использует не только обыденные понятия, но и специальные научные термины, рождающиеся уже на рациональной ступени. Любой самый элементарный научный факт выступает как результат сложной обработки данных наблюдений: их анализа, интерпретации, осмысления. Так, если мы лишь фиксируем в опыте отклонение стрелки амперметра или весов, все равно не должны забывать, что устройство даже столь простых приборов основано на определенной теории. Тем более очевидна «теоретическая нагруженность» таких «эмпирических фактов», как расширение Вселенной (о чем мы судим на основании определенной теоретической интерпретации красного смещения в спектрах галактик), результаты анализов «треков» элементарных частиц, полученных в камере Вильсона, и так далее.