- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
7. Физика сплошных сред - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Спустя некоторое время, тот же самый объем жидкости будет находиться где-то в другом месте. Вообще говоря, он будет иметь форму цилиндра с другим диаметром и находиться в другом месте. Он может еще иметь другую ориентацию (фиг. 40.13,б). Но если изменяется диаметр, то длина тоже должна измениться так, чтобы объем остался постоянным (поскольку мы считаем жидкость несжимаемой). Кроме того, поскольку вихревые линии связаны с веществом, их плотность увеличивается обратно пропорционально уменьшению площади поперечного сечения цилиндра. Произведение W на площадь цилиндра А будет оставаться постоянной, так что в соответствии с Гельмгольцем
Теперь обратите внимание, что при нулевой вязкости все силы на поверхности цилиндрического объема (или любого объема в этом веществе) перпендикулярны поверхности. Силы давления могут заставить его изменить форму, но без тангенциальных сил величина момента количества движения жидкости внутри измениться не может. Момент количества движения жидкости внутри маленького цилиндра равен произведению его момента инерции I на угловую скорость жидкости, которая пропорциональна завихренности W. Момент же инерции цилиндра пропорционален mr2. Поэтому из сохранения момента количества движения мы бы заключили, что
Но масса будет одной и той же (М1=М2), а площадь пропорциональна R2, так что мы снова получим просто уравнение (40.21). Утверждение Гельмгольца, которое эквивалентно формуле (III), есть просто следствие того факта, что в отсутствие вязкости момент количества движения элемента жидкости измениться не может.
Есть хороший способ продемонстрировать движущийся вихрь с помощью аппаратуры, показанной на фиг. 40.14.
Фиг. 40.14. Распространяющиеся вихревые кольца.
Это «барабан» диаметром и длиной около 60 см, состоящий из цилиндрической коробки с натянутым на ее открытое основание толстым резиновым листом. Барабан стоит на боку, а в центре его твердого дна вырезано отверстие диаметром около 8 см. Если резко ударить по резиновой диафрагме рукой, то из отверстия вылетает кольцевой вихрь. Хотя этот вихрь увидеть нельзя, можно смело утверждать, что он существует, так как он гасит пламя свечи, стоящей в 3—6 м от барабана. По запаздыванию этого эффекта вы можете сказать, что «нечто» распространяется с конечной скоростью. Лучше разглядеть то, что вылетает, можно, предварительно напустив в барабан дыму. Тогда вы увидите вихри в виде изумительно красивых колец «табачного дыма».
Кольца дыма (фиг. 40.15,а) — это просто баранка из вихревых линий.
Фиг. 40.15. Движущееся вихревое кольцо (я) и его поперечное сечение (б).
Поскольку W=СXv, то эти вихревые линия описывают также циркуляцию v (фиг. 40.15,б). Для того чтобы объяснить, почему кольцо движется вперед (т. е. в направлении, составляющем с направлением W правый винт), можно рассуждать так: скорость циркуляции увеличивается к внутренней поверхности кольца, причем скорость внутри кольца направлена вперед. Поскольку линии W переносятся вместе с жидкостью, то и они движутся вперед со скоростью v. (Конечно, большая скорость на внутренней части кольца ответственна за движение вперед вихревых линий на его внешней части.)
Здесь необходимо указать на одну серьезную трудность. Как мы уже отмечали, уравнение (40.90) говорит, что если первоначально завихренность W была равна нулю, то она всегда останется равной нулю. Этот результат — крушение теории «сухой» воды, ибо он означает, что если в какой-то момент значение W равно нулю, то оно всегда будет равно нулю, и ни при каких обстоятельствах создать завихренность нельзя. Однако в нашем простом опыте с барабаном мы могли породить вихревые кольца в воздухе, который до того находился в покое. (Ясно, что пока мы не ударили по барабану, внутри него v = 0 и W=0.) Все знают, что, загребая веслом, можно создать в воде вихри. Несомненно, для полного понимания поведения жидкости следует перейти к теории «мокрой» воды.
Другим неверным утверждением в теории «сухой» воды является предположение, которое мы делали при рассмотрении потока на границе между ним и поверхностью твердого предмета. Когда мы обсуждали обтекание потоком цилиндра (например, фиг. 40.11), то считали, что жидкость скользит по поверхности твердого тела. В нашей теории скорость на поверхности твердого тела могла иметь любое значение, зависящее от того, как началось движение, и мы не учитывали никакого «трения» между жидкостью и твердым телом. Однако то, что скорость реальной жидкости должна на поверхности твердого тела сходить на нуль,— экспериментальный факт. Следовательно, наши решения для цилиндра и с циркуляцией, и без нее неправильны, как и результат о создании вихря. О более правильных теориях я расскажу вам в следующей главе.
Глава 41
ТЕЧЕНИЕ «МОКРОЙ» ВОДЫ
§ 1.Вязкость
§ 2. Вязкий поток
§ 3.Число Рейнольдса
§ 4.Обтекание кругового цилиндра
§ 5. Предел нулевой вязкости
§ 6.Поток Куеттэ
§ 1. Вязкость
В предыдущей главе мы говорили о поведении воды, пренебрегая при этом эффектами вязкости. Теперь же мне хотелось бы обсудить, как вязкость влияет на течение жидкости. Рассмотрим реальное поведение жидкости. Я опишу качественно, как ведет себя жидкость в самых разных условиях, так чтобы вы получше прочувствовали эту науку. И хотя вы увидите сложные уравнения и услышите о трудных вещах, наша цель совсем не в том, чтобы изучить все тонкости. Цель этой главы скорее «общеобразовательная», просто я хочу дать вам некоторое понятие о том, как устроен мир. Однако здесь все же есть один пункт, который стоит того, чтобы его выучить: полезно знать простое определение вязкости. С него мы и начнем. Все же остальное предназначено для вашего удовольствия.
В предыдущей главе мы нашли, что законы движения жидкости содержатся в уравнении
В нашем приближении «сухой» воды мы отбрасывали последнее слагаемое, так что всеми эффектами вязкости мы пренебрегали. Кроме того, мы иногда делали еще дополнительное приближение, считая жидкость несжимаемой, и при этом получали дополнительное уравнение;
С·v=0.
Это приближение часто оказывается вполне приличным, особенно когда скорость потока много меньше скорости звука. Но в реальных жидкостях мы почти никогда не можем пренебречь внутренним трением, называемым нами вязкостью; большинство интересных вещей в поведении жидкости так или иначе связано именно с этим свойством. Так, мы узнали, что циркуляция «сухой» воды никогда не изменяется: если ее не было вначале, то она никогда и не появится. Но в то же время мы повседневно сталкиваемся с циркуляцией в жидкости. Так что нашу теорию надо подправить.
Начнем с важного экспериментального факта. Когда мы занимались потоком «сухой» воды, обтекающей какой-то предмет или текущей мимо него, т. е. так называемым «потенциальным потоком», у нас не было причин запретить воде иметь составляющую скорости, тангенциальную к поверхности предмета; только нормальная компонента должна была быть равна нулю. Мы не принимали во внимание возможность возникновения сил сдвига между жидкостью и твердым телом. А вот оказывается, хотя это далеко и не очевидно, что во всех случаях, где это было проверено экспериментально, скорость жидкости на поверхности твердого тела в точности равна нулю. Вы замечали, конечно, что лопасти вентилятора собирают на себя тонкий слой пыли, и это несмотря на то, что они вращаются в воздухе. Тот же эффект можно наблюдать даже в больших аэродинамических трубах. Почему же пыль не сдувается воздухом? Несмотря на то что лопасти вентилятора быстро вращаются в воздухе, скорость воздуха относительно них, измеренная непосредственно на их поверхности, равна нулю, так что поток воздуха не возмущает даже мельчайших пылинок. Мы должны модифицировать теорию так, чтобы она согласовалась с тем экспериментальным фактом, что во всех обычных жидкостях молекулы, находящиеся рядом с поверхностью, имеют нулевую скорость (относительно поверхности).
Сначала мы характеризовали жидкость так, что если приложить к ней напряжение сдвига, то, сколь бы мало оно ни было, жидкость «поддается» и течет. В статическом случае никаких напряжений сдвига нет. Однако, когда равновесия еще нет, в момент, когда вы давите на жидкость, силы сдвига вполне могут быть. Вязкость как раз и описывает эти силы, возникающие в движущейся жидкости. Чтобы измерить силы сдвига в процессе движения жидкости, рассмотрим такой эксперимент. Предположим, что имеются две плоские твердые пластины, между которыми находится вода (фиг. 41.1), причем одна из пластин неподвижна, тогда как другая движется параллельно ей с малой скоростью v0.