7. Физика сплошных сред - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Если мы отбросим fвязк, то в уравнении (40.4) все нам известно, за исключением выражения для ускорения. Может показаться, что формула для ускорения частиц жидкости должна быть очень простой, ибо очевидно, что если v — скорость частицы в некотором месте жидкости, то ускорение ее будет просто равно дv//дt. Но это совсем неверно, и по довольно хитрой причине. Производная дv/дt выражает изменение скорости v (х, у, z, t) в фиксированной точке пространства. А нам нужно знать, как изменяется скорость данной капельки жидкости. Представьте, что мы пометили одну капельку воды цветной краской и можем наблюдать за ней. За маленький интервал времени At эта капелька продвинется в другое положение. Если капелька движется по некоторому пути, изображенному на фиг. 40.4, то за промежуток Dt она из точки Р1переместится в точку Р2.
Фиг. 40.4. Ускорение частицы жидкости.
Фактически в направлении оси х она передвинется на расстояние vxDt, в направлении оси у — на расстояние vуDt, а в направлении оси z — на расстояние vzDt. Мы видим, что если v (х, у, z, t) — скорость частицы в момент t, то скорость той же самой частицы в момент t+Dt представляет величину v (х+Dx, у+Dy, z+Dz, t+Dt), причем
Dx=vxDt, Dy=vyDt и Dz=vzDt.
Из определения частных производных [вспомните уравнения гл. 2, вып. 5] мы с точностью до членов первого порядка получаем
Ускорение же Dv/Dt будет равно
Считая С вектором, это можно записать символически:
Обратите внимание, что, даже когда дv/дt=0, т. е. когда скорость в данной точке не изменяется, ускорение все же останется. Примером может служить вода, текущая с постоянной скоростью по кругу: она ускоряется даже тогда, когда скорость в данной точке не изменяется. Причина, разумеется, состоит в том, что скорость данной капельки воды, которая первоначально находилась в одной точке, моментом позднее будет иметь другое направление — это центростремительное ускорение.
Остальная часть нашей теории — чисто математическая: нахождение решения уравнения движения, полученного подстановкой ускорения (40.5) в (40.4), т. е.
где слагаемое с вязкостью уже выброшено. Воспользовавшись известным тождеством из векторного анализа, это уравнение можно переписать по-другому:
Если определить новое векторное поле Wкак ротор скорости v, т. е.
то векторное тождество можно записать так:
а наше уравнение движения (40.6) примет вид
Вы можете проверить эквивалентность уравнений (40.6) и (40.8), расписывая их по компонентам и сравнивая их, воспользовавшись при этом выражением (40.7).
Если Wвсюду равно нулю, то такой поток мы называем безвихревым (или потенциальным). В гл. 3, § 5 (вып. 5), мы уже определяли величину, называемую циркуляцией векторного поля. Циркуляция по любой замкнутой петле в жидкости равна криволинейному интегралу от скорости жидкости в данный момент времени вокруг этой петли:
Циркуляция на единицу площади для бесконечно малой петли по теореме Стокса будет тогда равна СXv. Таким образом, W представляет собой циркуляцию вокруг единичной площади (перпендикулярной направлению W). Кроме того, ясно, что если в любое место жидкости поместить маленькую соринку (именно соринку, а не бесконечно малую точку), то она будет вращаться с угловой скоростью W/2. Попытайтесь доказать это. Вы можете также попробовать доказать, что для ведра воды на вращающемся столике W равна удвоенной локальной угловой скорости воды.
Если нас интересует только поле скоростей, то из наших уравнений можно исключить давление. Взяв ротор обеих частей уравнения (40.8) и вспомнив, что r — величина постоянная, а ротор любого градиента равен нулю, а также использовав уравнение (40.3), находим
Это уравнение вместе с уравнениями
W=СXv (40.10)
и
С·v=0 (40.11)
полностью описывают поле скоростей v. На языке математики — если в некоторый момент мы знаем W, то мы знаем ротор вектора скорости и, кроме того, знаем, что его дивергенция равна нулю, так что в этих физических условиях у нас есть все необходимое для определения скорости v повсюду. (Все это в точности напоминает нам знакомые условия в магнетизме, где С·B=0 и СXB=j/e0c2.) Таким образом, данная величина W определяет v точно так же, как j определяет В. Затем из известного значения v уравнение (40.9) даст нам скорость изменения W, откуда мы можем получить новую W в следующий момент. Используя снова уравнение (40.10), найдем новое значение v и т. д. Теперь вы видите, как в эти уравнения входит весь механизм, необходимый для вычисления потока. Заметьте, однако, что эта процедура дает только скорости, а всю информацию о давлении мы потеряли.
Отметим особое следствие нашего уравнения. Если в какой-то момент времени t повсеместно W=0, то дW/дt тоже исчезает, так что W всюду останется равной нулю и в момент t +Dt. Отсюда следует, что поток все время остается безвихревым. Если вначале поток не вращался, то он так никогда и не начнет вращаться. При этом уравнения, которые мы должны решать, таковы:
С·v=0, СXv=0.
Они в точности напоминают уравнения электростатики или магнитостатики в пустом пространстве. Позднее мы вернемся к ним и рассмотрим некоторые частные задачи.
§ 3. Стационарный поток; теорема Бернулли
Вернемся к уравнениям движения (40.8), но ограничимся теперь приближением «стационарного» потока. Под стационарным потоком я подразумеваю поток, скорость которого в любом месте жидкости никогда не изменяется. Жидкость в любой точке постоянно заменяется новой жидкостью, движущейся в точности таким же образом. Картина скоростей всегда выглядит одинаково, т. е. v представляет статическое векторное поле. Как в магнитостатике мы рисовали силовые линии, так и здесь можно начертить линии, которые всегда касательны к скорости жидкости (фиг. 40.5).
Фиг. 40.5. Линии тока стационарного потока.
Эти линии называются «линиями тока». Для стационарного потока они действительно представляют реальные пути частиц жидкости. (В нестационарном потоке картина линий тока меняется со временем, однако в любой момент времени она не представляет пути частиц жидкости.)
Стационарность потока вовсе не означает, что ничего не происходит — частички жидкости движутся и изменяют свои скорости. Это означает только то, что дv/дt=0. Если теперь мы скалярно умножим уравнение движения на v, то слагаемое v·(WXv) выпадет и у нас останется только
Согласно этому уравнению, при малых перемещениях в направлении скорости жидкости величина внутри скобок не изменяется. В стационарном потоке все перемещения направлены вдоль линий тока; поэтому уравнение (40.12) говорит, что для всех точек вдоль линии тока
Это и есть теорема Бернулли. Постоянная, вообще говоря, для различных линий тока может быть разной; мы знаем только, что левая часть уравнения (40.13) постоянна всюду вдоль данной линии тока. Заметьте, кстати, что если стационарный поток безвихревой, т. е. если для него W=0, то уравнение движения (40.8) дает нам соотношение
так что
Оно в точности напоминает уравнение (40.13), за исключением того, что теперь постоянная во всей жидкости одна и та же. На самом деле теорема Бернулли не означает ничего большего, чем утверждение о сохранении энергии. Подобные теоремы о сохранении дают нам массу информации о потоке без детального решения уравнений. Теорема Бернулли настолько важна и настолько проста, что мне бы хотелось показать вам, как можно ее получить другим способом, отличным от тех формальных вычислений, которые мы только что провели. Представьте себе пучок линий тока, образующих трубку тока (фиг. 40.6, а).
Фиг. 40.6. Движение жидкости в трубке.
Поскольку стенки трубки образуются линиями тока, то жидкость через них не протекает. Обозначим площадь на одном конце трубки через A1, скорость жидкости через v1, плотность через r1 а потенциальную энергию через j1. Соответствующие величины на другом конце трубки мы обозначим через A2, v2, r2 и j2. После короткого интервала времени Dt жидкость на одном конце передвинется на расстояние v1Dt, а жидкость на другом конце — на расстояние v2Dt (см. фиг. 40.6, б). Сохранение массы требует, чтобы масса, которая вошла через A1была равна массе, которая