- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
7. Физика сплошных сред - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
так что
Оно в точности напоминает уравнение (40.13), за исключением того, что теперь постоянная во всей жидкости одна и та же. На самом деле теорема Бернулли не означает ничего большего, чем утверждение о сохранении энергии. Подобные теоремы о сохранении дают нам массу информации о потоке без детального решения уравнений. Теорема Бернулли настолько важна и настолько проста, что мне бы хотелось показать вам, как можно ее получить другим способом, отличным от тех формальных вычислений, которые мы только что провели. Представьте себе пучок линий тока, образующих трубку тока (фиг. 40.6, а).
Фиг. 40.6. Движение жидкости в трубке.
Поскольку стенки трубки образуются линиями тока, то жидкость через них не протекает. Обозначим площадь на одном конце трубки через A1, скорость жидкости через v1, плотность через r1 а потенциальную энергию через j1. Соответствующие величины на другом конце трубки мы обозначим через A2, v2, r2 и j2. После короткого интервала времени Dt жидкость на одном конце передвинется на расстояние v1Dt, а жидкость на другом конце — на расстояние v2Dt (см. фиг. 40.6, б). Сохранение массы требует, чтобы масса, которая вошла через A1была равна массе, которая
вышла через А2. Изменение масс в этих двух концах должно быть одинаково:
Таким образом, мы получаем равенство
Оно говорит нам, что при постоянном r скорость изменяется обратно пропорционально площади трубки тока.
Вычислим теперь работу, произведенную давлением в жидкости. Работа, произведенная над жидкостью, входящей со стороны сечения А1, равна р1A1v1АDt, а работа, произведенная в сечении А2, равна p2A2v2Dt. Следовательно, полная работа, произведенная над жидкостью, заключенной между A1 и А2, будет
что должно быть равно возрастанию энергии массы жидкости DM при прохождении от А1до А2. Другими словами,
где Е1 — энергия единицы массы жидкости в сечении А1, а Е2 — энергия единицы массы в сечении А2. Энергию единицы массы жидкости можно записать в виде
где 1/2v2 — кинетическая энергия единицы массы, j — потенциальная энергия, a U — дополнительный член, представляющий внутреннюю энергию единицы массы жидкости. Внутренняя энергия может соответствовать, например, тепловой энергии сжимаемой жидкости или химической энергии. Все эти величины могут изменяться от точки к точке. Воспользовавшись выражением для энергии в уравнении (40.16), получим
Но мы видели, что DМ=rDvDt, и получили
а это как раз приводит нас к результату Бернулли, где имеется дополнительный член, представляющий внутреннюю энергию. Если жидкость несжимаемая, то внутренняя энергия с обеих сторон одна и та же и мы снова убеждаемся в справедливости уравнения (40.14) вдоль любой линии тока.
Рассмотрим теперь некоторые простые примеры, в которых интеграл Бернулли позволяет нам сразу описать поток. Предположим, что из отверстия вблизи дна резервуара вытекает вода (фиг. 40.7).
Фиг. 40.7. Вытекание жидкости из резервуара.
Рассмотрим случай, когда скорость потока vвых в отверстии гораздо больше скорости потока вблизи поверхности воды в резервуаре; другими словами, предположим, что диаметр резервуара настолько велик, что падением уровня жидкости можно пренебречь. (Мы могли бы при желании проделать и более аккуратные вычисления.) Давление на поверхность воды в резервуаре равно р0(атмосферному давлению), т. е. такое же, как и давление на бока струи. Напишем теперь уравнение Бернулли для линии тока наподобие той, что показана на фиг. 40.7. В верхней части резервуара скорость v мы примем равной нулю; гравитационный потенциал j здесь выберем тоже равным нулю. В отверстии же скорость равна vвых а j =-gh, так что
или
Скорость получилась в точности равной скорости предмета, падающего с высоты h. В этом нет ничего удивительного —ведь в конечном счете вода на выходе получает свою кинетическую энергию из запаса потенциальной энергии воды, находящейся наверху резервуара. Однако не воображайте, что вы можете определить скорость убывания жидкости из резервуара, умножив эту скорость vвых на площадь отверстия. Скорости частиц жидкости в тот момент, когда струя вырывается из отверстия, не параллельны друг другу, а имеют компоненту, направленную к центру потока; струя сужается. Пройдя небольшое расстояние, струя перестает сжиматься, и скорости становятся параллельными. Таким образом, полный поток равен скорости, умноженной на площадь именно в том месте, где сжатие струи прекратилось. На самом деле, если у нас есть выходное отверстие просто в виде круглой дыры с острым краем, то сечение струи сокращается до 62% от площади отверстия. Уменьшение эффективной площади выходного отверстия для различных форм выходных труб разное, а его экспериментальное значение можно найти в таблице коэффициентов истечения.
Если выходная труба вдается в резервуар, как показано на фиг. 40.8, то можно весьма красиво доказать, что коэффициент истечения в точности равен 50%. Я лишь намекну вам, как проводится это доказательство.
Фиг. 40.8. Если выходная труба вставлена внутрь жидкости, то сокращение струи составляет половину площади отверстия.
Чтобы получить скорость, мы использовали закон сохранения энергии [см. уравнение (40.18)]. Можно еще рассмотреть закон сохранения импульса. Поскольку с выходящей струей должен утекать и импульс, то к поперечному сечению выходящей трубы должна быть приложена сила. Откуда же она берется? Сила эта должна происходить от давления на стенки. Но наше выходное отверстие мало и расположено далеко от стенок, поэтому скорость жидкости вблизи стенок резервуара будет очень мала. Следовательно, давление на каждую стенку, согласно (40.14), почти точно такое же, как статическое давление в покоящейся жидкости. При этом статическое давление на любую точку с одной стороны резервуара должно уравновешиваться равным давлением на противоположную стенку, за исключением точки на стороне, противоположной выходной трубе. Если теперь мы вычислим импульс, выталкиваемый со струей этим давлением, то сможем показать, что коэффициент истечения равен 1/2. Однако этот метод непригоден для отверстия, наподобие показанного на фиг. 40.7, ибо увеличение скорости около стенок вблизи области отверстия дает падение давления, которое невозможно вычислить.
Рассмотрим теперь другой пример — горизонтальную трубу с переменным поперечным сечением (фиг. 40.9), по которой от одного конца к другому течет вода.
Фиг. 40.9. Там, где скорость повышается, давление понижается.
Сохранение энергии, а именно формула Бернулли, говорит, что в суженной области, там, где скорость выше, давление ниже. Мы можем легко продемонстрировать этот эффект, измеряя давление в разных местах с различным сечением с помощью столбика воды, сообщающегося с потоком через достаточно малые отверстия, не возмущающие потока. При этом давление измеряется высотой вертикального столбика воды. И оно в узких местах действительно оказывается меньше, чем в широких. Если после сужения площадь сечения возвращается к своей прежней величине — той, что была до сокращения, то давление снова возрастает. Формула Бернулли предсказывает, что давление до сужения должно быть тем же, что и после него, однако на самом деле оно заметно меньше. Ошибка нашего предсказания кроется в том, что мы пренебрегли трением, вязкой силой, которая вызывает падение давления вдоль трубы. Однако, несмотря на это падение, давление в узком месте определенно меньше (из-за возрастания скорости), чем по обеим сторонам от него, как это предсказал Бернулли. Скорость v2 должна превышать скорость v1 чтобы через сужение могло пройти то же количество воды. Поэтому вода должна ускоряться, переходя из широкой части в узкую. Силы, которые приводят к этому ускорению, и есть перепад давления.