- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Этимологии. Книги I–III: Семь свободных искусств - Исидор Севильский
Шрифт:
Интервал:
Закладка:
Решение трех классических геометрических задач древности связывается с именами софиста Гиппия Элидского, который нашел способ трисекции угла при помощи изобретенной им кривой — квадратрисы; математика Динострата (сер. IV в.), ученика Евдокса, который применил ту же квадратрису для решения проблемы квадрирования круга. Решение проблемы удвоения куба связывают с именами Архита, Евдокса, ученика Архита, и Менэхма (сер. IV в.), ученика Евдокса. Про Менэхма мы знаем, что он решил эту проблему через нахождение двух средних пропорциональных в точке пересечения гиперболы и параболы. Он же был первым математиком, который начал разработку теории конических сечений: круга, эллипса, гиперболы, параболы. Доказательства невозможности решить классические задачи с помощью только циркуля и линейки были получены лишь в 1837 и 1882 гг. П. Ванцелем и И. Г. Ламбертом.
Как мы уже отмечали, открытие иррациональности, а также парадоксы бесконечно малых, предложенные Зеноном Элейским, направили античную математику в русло геометрии, и первым, кто это сделал, был Евдокс Книдский. Опираясь на свою теорию отношений, он применил «метод исчерпывания», при котором геометрическая фигура, длина, площадь или объем которой требуется найти сначала, исчерпывается такими фигурами (вписанными и описанными), длины, площади или объемы которых легко найти, а затем делается предельный переход. Обобщая этот метод, мы и сегодня вводим определенный интеграл как предел, к которому стремятся верхняя и нижняя римановы суммы. Но и в античности доказательство, полученное таким методом, являлось совершенно строгим, легко формализующимся в терминах современной математики.
Формирование античной математики закончилось ко временам Евклида. Его «Начала» — это искусно собранные и расположенные достижения античной математики к концу IV в., снабженные прекрасным доказательным аппаратом. Книга стала основным учебником по математике на две тысячи лет, а способ изложения материала и в XX в. считается образцом, которому стремятся следовать ученые даже за пределами этой науки. I книга содержит основные определения, аксиомы, здесь рассматриваются основные свойства треугольников и четырехугольников; во II книге излагается геометрическая алгебра (способы решения квадратных уравнений); в III книге рассматриваются свойства касательных и хорд, а в IV — правильные многоугольники и основы учения о подобии; в V книге изложена Евдоксова теория пропорций в ее геометрической форме, которая в VI книге применяется к подобию треугольников. Книги VII-IX, как мы уже говорили, арифметические, а X книга, самая сложная, содержит теорию иррациональных чисел Теэтета. В книгах XI-XIII рассматривается стереометрия: основные определения, вычисление объемов основных фигур и их отношений, теория правильных многогранников. Теория конических сечений была изложена в отдельной книге.
Период от Евклида (включительно) до Аполлония и его учеников, Диокла, Никомеда и Персея, то есть с 300 по 150 г., был золотым веком греческой математики. Огромен вклад в геометрию Архимеда Сиракузского, особенно в той области, которую мы называем интегральным исчислением. Используя деление тел на сегменты малой толщины и метод исчерпания, он в работах «О сфере и цилиндре», «О конойдах и сферойдах», «Квадратура параболы» находит точные и приближенные значения площадей практически всех известных в его время геометрических фигур, в том числе и довольно сложных, как, например, площадь параболического сегмента. В трактате «Измерение круга» Архимед нашел приближенное значение числа π с точностью до третьего знака после запятой. Особенно интересна его книга «О спиралях», в которой он сумел придумать новую сложную кривую, носящую теперь его имя, исследовать ее свойства и применить ее для точного вычисления числа π, а также для вычисления различных площадей, например эллипса. Исследуя спирали, он научился находить касательную к ним, что было первым шагом в направлении дифференциального исчисления. Современниками Архимеда были Ко́нон из Самоса, исследователь конических сечений и спиралей, и его ученик Досифей. Последним великим математиком эпохи эллинизма был Аполлоний из Перги (ок. 260 — ок. 70 гг.), в лице которого «геометрическая алгебра» достигает своей вершины. Он написал трактат в семи книгах «О кониках», то есть о конических сечениях, где исследование их свойств доведено до исследования эволют этих кривых. Кстати, именно в работах Аполлония мы впервые в явном виде встречаем требование выполнять геометрические построения только с помощью циркуля и линейки — это требование было не таким уж обязательным для греческой науки, как иногда полагают.
Римская эпоха также дала несколько замечательных имен математиков, работавших, главным образом, в Александрии Египетской. Среди них — Герон Александрийский, живший, вероятно, в I в. н. э., — энциклопедист, писавший на геометрические и механические темы. Формулу Герона для вычисления площади треугольника (из трактата «Геометрика») знает сегодня любой школьник. Герои также вычислял объемы различных тел: вообще его интересовали метрические свойства тел, при этом он знал египетскую и вавилонскую математику. Младший современник Герона, Менелай Александрийский (ок. 100 г. н. э.), в работе «Сферика» рассматривает геометрию сферы, сферические треугольники, тригонометрию. Самым известным математиком этого периода был Птолемей, чей труд «Альмагест», написанный около 140 г. н. э., в особенности его II книга, содержит немало геометрических идей, особенно из области тригонометрии. Птолемей вычисляет значения синусов для углов с шагом в полградуса. В «Планисферии» он рассматривает теорию проекций, а в «Руководстве по географии» определяет положение на Земле с помощью системы географических координат (изобретенной еще Эратосфеном именно для этих целей). Последним известным греческим математиком был Папп Александрийский (кон. III в. н. э.). Его «Собрание» было большим учебником по изучению всего того, чего достигла античная математика. Большинство результатов трудов древних авторов сохранилось до наших дней благодаря Паппу, который был очень талантливым компилятором, а его книга будила мысль многих математиков арабского мира и европейского Возрождения.
В латинской традиции геометрия, с которой римлян познакомил Варрон, долгое время существовала лишь как школьная дисциплина, соответственно входила в круг знания людей, которых называют риторами. Примеры глубины этого рода знания можно найти в сочинении «О дне рождения» Цензорина (III в. н. э.) или в «О бракосочетании Филологии с Меркурием» Марциана Капеллы. Даже попытка Аврелия Августина улучшить качество высшего образования, в целом, кончилась неудачею. Существенным шагом вперед была переводческая работа Боэция, однако, его геометрические труды были утрачены уже в раннем средневековье. Двум замечаниям Кассиодора, что Боэций перевел «Начала» Евклида, можно доверять, в отличие от вложенной им же в уста короля Теодориха фразы, что «механика Архимеда ты, [Боэций,] вернул сицилийцам в латинском обличии»[660]: последняя отражала скорее намерение, чем действительность. Нам не известно, что представляла собой эта книга, но, очевидно, это было краткое переложение основных мест Евклида, а не полный перевод (последний появился в

