Родителям: как быть ребенком - Юлия Гиппенрейтер
Шрифт:
Интервал:
Закладка:
Трудный опыт детства, а затем — и глубокие размышления ученого-психолога привели К. Юнга к безоговорочному выводу о том, что воспитатели сами нуждаются в воспитании. По его убеждению, «ни один человек из окончивших школу и даже университет не может считаться вполне воспитанным». Что касается непосредственно деятельности школ и учителей, то также хочется привести краткие и веские слова Юнга: «Часто в школе все сводится лишь к тому, чтобы методически вдалбливать в головы учеников учебный материал. Но в этом заключается самое большее только половина действительного значения школы. Другую половину составляет подлинное психическое воспитание, опосредствуемое личностью учителя». Но для этого учитель «сам должен быть честным и нравственно здоровым человеком».
Александр Звонкин. Грустные размышления о школе[29]
Звонкин Александр Калманович, московский математик, кандидат физико-математических наук, до 1989 г. сотрудник одного из исследовательских институтов нефтяной и газовой промышленности. В настоящее время профессор университета в г. Бордо (Франция).
В своей книге «Малыши и математика» А. К. Звонкин делится уникальным опытом ведения математического кружка с дошкольниками. Это своего рода дневник занятий, насыщенный интересными задачами, ценными наблюдениями и размышлениями автора о математике и детях.
В моей книге «Продолжаем общаться с ребенком. Так?» можно найти примеры, отражающие поиски и замечательные находки А. Звонкина как настоящего учителя с большой буквы, который сумел не только вызвать и поддерживать длительный интерес детей к занятиям, но и развить их способности самостоятельно мыслить, обсуждать вопросы, доказывать гипотезы. В результате его ученики-дошкольники смогли освоить некоторые темы, традиционно попадающие в программу средних классов школы, а то и вовсе выходящие за ее пределы.
В начале занятий «кружка» (март 1980) самому младшему их участнику Диме (сыну автора) было неполных четыре года. Занятия длились немногим более трех лет и закончились вскоре после поступления детей в школу. Публикуемый здесь отрывок из книги А. Звонкина относится к началу школы (осень 1983). В нем мы видим разительный контраст между результатами внимательного и вдумчивого обучения детей в кружке и официального школьного образования[30].
3 октября 1983 года. После первого месяца в школе.
Мне почему-то до самого последнего времени казалось, что на Диму школа не подействует так, как она действует на других ребят (страшно применять к нему слово «отупляюще», поэтому скажем так: «негативно»). Однако в последнее время я начинаю замечать у него некоторые сбои.
Так, недавно, он у меня спросил:
— Папа, а 4 недели — это сколько дней? Нужно к 228 четыре раза прибавить по 7 или четыре раза отнять?
Я так и не смог у него добиться, откуда он взял число 228.
В другой раз мы вместе шли из школы и вычисляли, может ли один учитель вести уроки физкультуры во всей школе. Он очень плохо понимал, что и зачем надо делать, не мог сосчитать количество уроков в неделе, не знал потом, следует делить на 2 или умножать (2 урока в неделю в классе) и т. п.
Вот и сегодня он тоже был не на высоте. И не в том дело, что он соображал медленнее, чем раньше, а в том, что его поток гипотез был менее интенсивен, чем обычно, и они были менее разнообразны.
Характерен в этом отношении рассказ Гали З. о своем сыне. В их учебнике (кажется, второго класса) есть так называемые «задачи нестандартного содержания». В течение года ни одну из этих задач Лева решить не мог. Однако началось лето, и через две недели каникул он легко решил все задачи до единой: что-то его «отпустило».
Ноябрь 1983 года. Школа наводит ужас. [Записано в те дни, когда Дима сложил все нечетные числа сначала от 1 до 99, а потом от 1 до 999.[31]]
Так случилось, что в день занятия кружка (17 ноября) Дима поздно вернулся из школы, а погода была очень хорошая, и я после обеда выпустил его погулять. Поэтому уроки он стал делать после кружка, и контраст между его успехами на кружке и в школе оказался особенно ярким. Дело в том, что оценки первоклассникам начинают ставить только со второй четверти, т. е. с 10 ноября. За прошедшую неделю Дима получил четыре оценки по математике. Вот они в порядке поступления: 3, 2, 3, 2. Как раз в четверг, 17-го, Дима получил свою тетрадь домой: мы как родители двоечника должны были расписаться возле каждой оценки, чтобы показать, что мы с его успехами ознакомлены. В чем же дело? Я внимательно просмотрел его тетрадь. Исписано около трети. Прежде всего, хочется отметить, что в ней нет ни одной — подчеркиваю, ни одной — арифметической ошибки. Я был даже удивлен: я привык, что в счете он нередко ошибается. Наивысшая оценка — тройка — стоит за решение «примеров», т. е. за чистые вычисления типа: 9–4 — 3 = 2. Здесь претензии только к почерку. Написал бы красиво — вполне мог бы получить 5. Остальные оценки — за задачи, и с ними дело хуже. Конечно же, все задачи решены правильно — этот факт я выношу за скобки (и, видимо, учительница его выносит за скобки тоже). Однако запись — вот в чем корень зла! Есть, конечно, замечания и по почерку, но не они главное. Замечания другого рода таковы (я смешиваю в одну кучу «ошибки» из разных задач): слово «задача» написано с маленькой буквы; после него не стоит точка; слово «ответ» тоже с маленькой буквы; в другом месте вместо «ответ» написано сокращенно «от.». После слова «ответ» следует ставить двоеточие; сначала Дима этого не заметил, потом после моего вопроса, заданного дома, специально в школе посмотрел; оказалось, двоеточие таки нужно. Но на следующий раз он поставил его не там — написал «Ответ 6: р.». (Какой смысл для него в этом знаке?) Тонким моментом является также употребление именованных величин (а они у них сейчас таковы во всех задачах). Допустим, нужно сложить 3 и 4 коровы. Тогда в так называемой краткой записи условия задачи нужно написать соответственно 3 к. и 4 к., например:
На лугу — 3 к.
На поле — 4 к.?
Затем, в момент выполнения действия, размерность исчезает: 3 + 4 =… Когда же получается результат, то размерность появляется снова — но на этот раз обязательно в скобках:. = 7 (к.). (В принципе — вполне разумно, иначе слева стояли бы безразмерные величины, а справа — уже коровы. Но что понимают в этом первоклашки?) Наконец, в ответе это самое «к.» пишется опять без скобок. Дима поначалу не разобрался в этой системе и иногда писал лишние скобки где не надо, а иногда забывал поставить размерность вообще. Трудности вызывает также место для вопросительного знака. Если в задаче спрашивается, сколько штук чего-то у кого-то, то и знак вопроса ставится в той же строчке, например:
(adsbygoogle = window.adsbygoogle || []).push({});