- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Быстрая математика: секреты устного счета - Билл Хэндли
Шрифт:
Интервал:
Закладка:
• Если число, составленное из первой тройки цифр, находится между 1 и 7, то первой цифрой ответа будет 1.
• Если оно находится между 8 и 26, то первой цифрой ответа будет 2.
• Если оно находится между 27 и 63, то первой цифрой ответа будет 3.
Думаю, вы уловили закономерность. Оценка значения кубического корня из числа, составленного из первой тройки цифр, дает первую цифру ответа. Остальные цифры (по количеству остающихся троек) примем равными 0. Это будет первое приближение искомого кубического корня.
Возьмем в качестве примера число 250:
3√250 =
250 больше, чем 6 в кубе (216), но меньше 7 в кубе (343). Это говорит нам о том, что значение корня находится между 6 и 7.
Делим исходное число на первое приближение корня (6), при этом дважды:
250: 6 = 41,67
Делим полученный ответ снова на 6:
41,67: 6 = 6,94
Разница между первым приближением (6) и результатом двойного деления (6,94) составляет 0,94. Разделим это число на 3 и прибавим полученный результат к нашему первому приближению:
0,94: 3 = 0,31
Прибавляя к 6, получаем 6,31.
3√250 = 6,31
Данное приближение всегда будет немного больше фактического корня, поэтому округлим его в меньшую сторону до 6,3. Калькулятор дает значение корня 6,2996. Мы округлили недостаточно, однако полученный нами ответ верен до одной цифры после запятой. И настоящее преимущество состоит в том, что вышеприведенный расчет можно произвести в уме.
Последний шаг в наших вычислениях иными словами можно описать как вычисление среднего значения для трех использованных нами чисел. А именно: мы находим сумму 6 + 6 + 6,94 и делим на 3.
6 + 6 + 6,94 = 18,94
18,94: 3 = 6,31
Я считаю, что гораздо проще делить разницу на 3.
Воспользовавшись простым десятиразрядным калькулятором с четырьмя функциями, я взял 6,31 в качестве второго приближения и повторил вычисления. В качестве окончательного ответа я получил 6,2996053, тогда как мой инженерный калькулятор выдал в ответе 6,299605249 — таким образом, метод обеспечил точность до семи цифр после запятой.
Попробуйте вычислить следующие кубические корни самостоятельно:
a) 3√230 = __; б) 3√540 = __; в) 3√8162 = __; г) 3√30000 = __
Ответы:
а) 6,127; б) 8,1457; в) 20,134; г) 31,07
Используя вышеизложенный метод, полученные вами ответы должны быть весьма близкими к фактическим значениям. Если хотите, можете оценить точность приближения в процентах.
Существует другой способ для решения примеров в) и г). Первыми приближениями являются 20 и 30 соответственно. Таким образом, деление можно выполнять только один раз: на 202 и 302. Это означает деление на 400 и 900. Речь идет о том, чтобы переместить запятую на две цифры влево и делить на 4 и 9.
Аналогично нашему методу вычисления приближенного значения квадратного корня, если исходное число ненамного меньше куба некоего числа, мы можем брать в качестве первого приближения число, куб которого больше, а не нижнее приближение. После этого делим дважды на первое приближение и вычитаем треть разницы между полученным результатом и первым приближением. И опять-таки, как и в случае с квадратным корнем, существует способ сократить вычисления.
Рассмотрим, к примеру, кубический корень из 320.
3√320 =
6 в кубе равно 216, а 7 в кубе будет 343. 7, безусловно, является более близким приближением.
320: 7 = 45,71
Снова делим на 7:
45,7: 7 = 6,53
Вычитаем 6,53 из 7:
7 – 6,53 = 0,47
Теперь необходимо вычислить треть разницы:
0,47: 3 = 0,157
Вычитаем треть разницы (0,157) из нашего приближения (7):
7 – 0,157 = 6,843
Округлим до 6,84 — это искомый ответ.
3√320 = 6,84
Истинным ответом является 6,8399.
Теперь по поводу более короткого способа вычислений. На самом деле мы просто нашли среднее значение для чисел 7, 7 и 6,53. Иными словами, речь идет о делении суммы этих чисел на 3:
7 + 7 + 6,53 = 20,53
20,53: 3 = 6,843
Деля 20 на 3, мы получаем 6 с остатком 2, который переносим к 0,53, получая 2,53.
2,53: 3 = 0,843
Тогда как в случае квадратного корня мы переносим 1, в случае кубического корня мы переносим 2. Вместо того чтобы вычитать треть разницы, вычисленной от верхнего приближения, мы берем нижнее приближение (в данном случае 6), переносим 2 и делим на 3, получая окончательный ответ.
Почему мы переносим 2, вычисляя кубические корни? Потому что, как и в рассмотренном только что случае, когда вычисляем среднее из трех чисел, мы складываем два числа, которые на единицу больше искомого. Поэтому суммой будет нижнее приближение, взятое трижды, плюс 2.
Попробую проиллюстрировать на примере:
3√700 =
В качестве первого приближения берем 9, которое является приближением сверху (9 в кубе равно 729).
Делим 700 на 9 дважды:
700: 9 = 77,77 (округлили в меньшую сторону)
77,77: 9 = 8,64
Первой цифрой ответа является 8. Чтобы получить остаток, заменим целую часть на 2, оставив дробную часть как есть, и разделим полученное число на 3.
2,64: 3 = 0,88
Искомым ответом является 8,88. Он точен до двух знаков после запятой.
Попробуем решить еще один пример:
3√7531 =
Разбиваем число под знаком корня на тройки цифр.
Получаем:
Найдем приближенное значение кубического корня из числа, составленного из цифр первой тройки, то есть 7. 7 близко к 8, равному 23, поэтому возьмем 2 в качестве нашего первого приближения. У нас две тройки цифр, поэтому в ответе будет две цифры. Берем, как водится, 0 в качестве второй цифры, получая полное первое приближение 20.
Делим 7531 на 20 дважды. Чтобы разделить на 20, сначала делим на 10, а затем на 2.
7531: 20 = 376,55
376,55: 20 = 18,8275
Вместо деления на 20 дважды мы могли бы разделить на 20 в квадрате, то есть на 400.
7531: 100 = 75,31
75,31: 4 = 18,8275
Теперь мы знаем, что первой цифрой ответа является 1. Речь идет о цифре десятков. Нашим промежуточным результатом является 10.
Ставим 2 перед остатком числа и получаем 28,8275.
28,8275: 3 = 9,609
10 + 9,609 = 19,609
Округляя, получаем 19,6. Наш ответ верен до одной цифры после запятой. Фактический ответ равен 19,60127, значит, мы получили очень близкий результат.
Попробуйте решить следующие примеры самостоятельно, а

