Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Математика » Математика. Поиск истины. - Морис Клайн

Математика. Поиск истины. - Морис Клайн

Читать онлайн Математика. Поиск истины. - Морис Клайн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 41 42 43 44 45 46 47 48 49 ... 80
Перейти на страницу:

…на обычном языке столь же полно, ясно и определенно, как и на языке формул? Если такое возможно, то не был бы их перевод с иероглифики поистине благодеянием для таких, как я, чтобы мы могли проверить их в эксперименте?.. Если такое возможно, то разве было бы плохо, чтобы математики, работающие над этими предметами, излагали свои результаты в популярном, полезном и рабочем виде, так же, как они излагают их в наиболее удобном и полезном для себя виде?

К сожалению, призыв Фарадея и поныне остается безответным.

Невозможность качественно, или материально, объяснить электромагнитные явления резко контрастирует с точными количественными описаниями тех же явлений, предложенными Максвеллом и его последователями. Подобно тому как законы Ньютона дают ученым средство, позволяющее работать с веществом и силой, не вдаваясь в объяснение ни того ни другого, уравнения Максвелла позволили ученым творить чудеса с электромагнитными явлениями, несмотря на отсутствие понимания физической природы последних. Количественные законы — это все, чем мы располагаем, пытаясь дать единое рациональное объяснение. Математические формулы точны и всеобъемлющи, качественная интерпретация расплывчата и неполна. Электроны, электрическое и магнитное поля, эфирные волны — не более чем имена переменных, входящих в формулы; как заметил по этому поводу Гельмгольц, в теории Максвелла электрический заряд является лишь носителем символа.

Но если физическое понимание электромагнитных явлений отсутствует, а наша способность рассуждать о них, пользуясь физическими понятиями, весьма ограниченна, то какова в этом случае природа нашего понимания электромагнитных реалий? На чем мы основываемся, утверждая, что нам удалось овладеть электромагнитными явлениями? Математические законы — всего лишь средства для нащупывания, открытия и использования этой обширной области реального мира; математические законы — единственное знание, которым человеческий разум располагает о загадочных явлениях электромагнетизма. И хотя такой ответ вряд ли удовлетворит человека, не посвященного в эти «дельфийские» таинства наших дней, современные ученые приемлют его. Столкнувшись с многочисленными загадками природы, современный ученый не может не испытывать чувства радости, если их удается «похоронить» под грузом математических символов, причем совершить погребение столь тщательно, что многие последующие поколения ученых не в состоянии обнаружить вход в «гробницу».

На примере теории электромагнитного поля Максвелла мы сталкиваемся с поразительным фактом: одно из величайших достижений физической теории оказывается почти целиком математическим. Некоторые формальные выводы этой теории, такие, как индуцирование тока в проводниках или прием сигнала за тысячи километров от источника, подтверждаются нашим чувственным опытом, но суть теории сама по себе остается чисто математической.

В какой-то мере мы уже были подготовлены к столь необычному повороту событий. Ознакомившись с работами Ньютона по тяготению, мы задались вопросом: что такое тяготение и как оно действует? Обнаружилось, что у нас нет физического понимания действия гравитации. Мы располагаем только математическим законом, дающим количественное описание силы тяготения, и, используя этот закон и законы движения, можем предсказывать явления, поддающиеся экспериментальной проверке. Но сущность понятия гравитации скрыта от нас.

Мы видим также, что центральным стержнем наиболее совершенных физических теорий является математика, точнее несколько формул и следствий из них. В основе каждой физической теории лежат прочные и четкие математические принципы. Наши теоретические умозрительные построения выходят за рамки интуитивных и чувственных восприятий. Пользуясь и теорией гравитации Ньютона, и теорией электромагнитного поля Максвелла, мы вынуждены признаться в незнании основных механизмов и возложить на математику описание того, что нам известно. Такое признание, возможно, наносит удар по нашему самолюбию, но вместе с тем способствует пониманию истинного положения вещей. Именно теперь мы можем по достоинству оценить мысль, высказанную Уайтхедом: «Несомненный парадокс состоит в том, что именно предельные абстракции [математики] служат теми истинными орудиями, посредством которых мы управляем нашим пониманием конкретных фактов».

В этом парадоксе и заключается своеобразие математики, ибо она позволяет открывать явления, которые, будучи взятыми отдельно от человеческого разума, отнюдь не очевидны, хотя и вполне реальны. Уайтхед сказал как-то, что выделять математику в человеческом мышлении — все равно что вместо Гамлета выдвигать на первое место в трагедии Шекспира Офелию, а не Гамлета: «Офелия, бесспорно, очаровательна и немного безумна, но Гамлет — все же центральный персонаж».

В 1931 г. Эйнштейн, характеризуя изменение, внесенное в наше представление о физической реальности работами Максвелла, назвал его «наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона» ([7], с. 138).

VIII

Прелюдия к теории относительности

Здравый смысл — это толща предрассудков, успевших отложиться в нашем сознании к восемнадцати годам.

Альберт Эйнштейн

Аксиома — это предрассудок, освященный тысячелетиями.

Эрик Т. Белл

Как и «чистые» математики, физики-теоретики на рубеже XX в. были преисполнены гордости за достигнутые успехи, и состояние физических теорий не вызывало у них беспокойства. Разве не они открыли совершенно новый мир — мир электромагнитных явлений, сулящий ускорить и расширить культурный и технический прогресс человечества, существенно усовершенствовать средства связи? Возможно, что такому безмятежному, не омрачаемому критикой состоянию теоретической физики в какой-то мере способствовала гипотеза эфира, который на протяжении двух веков считался средой, где якобы распространяется свет и электромагнитное излучение других видов.

Но безмятежное спокойствие, царившее в физике на рубеже нашего века, было затишьем перед бурей. Когда восторги, вызванные замечательными достижениями, начали утихать, физики-теоретики поняли, что далеко не все фундаментальные проблемы решены. Одно из решений таких проблем — создание теории относительности — ознаменовало подлинный переворот в научной концепции реального физического мира. И хотя этот переворот не оказал столь сильного влияния на нашу повседневную жизнь, как радио и телевидение, ставшие со временем достоянием миллионов, для нашего понимания природы физического мира его последствия были необычайно важны.

Какие проблемы заставляли математиков и физиков в конце XIX в. углубленно размышлять и искать принципиально новые подходы к объяснению фундаментальных явлений окружающего мира? Первая из таких проблем — геометрия физического пространства. Чтобы понять суть этой проблемы, нам придется вернуться к прошлому.

На протяжении двух тысячелетий не один математик высказывал сомнение в физической истинности аксиомы Евклида о параллельных, которая гласит:

И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти две прямые неограниченно встречаются с той стороны, где углы меньше двух прямых.

([17], с. 15.)

Это означает (рис. 32), что если углы 1 и 2 в сумме меньше 180°, то прямые a и b, будучи продолженными достаточно далеко, пересекутся (на рисунке — справа).

Рис. 32.

Евклид имел достаточно веские основания, чтобы сформулировать свою аксиому именно так. Он мог бы утверждать, что если сумма углов 1 и 2 равна 180°, то прямые a и b никогда не пересекутся, сколько бы их ни продолжали, т.е. что прямые a и b в этом случае параллельны. Однако Евклид явно опасался предположить, что могут существовать две бесконечные прямые, которые никогда не пересекаются. Существование таких прямых не подкреплялось опытом и отнюдь не было самоочевидным. Но на основе аксиомы о параллельных и других аксиом своей геометрии Евклид доказал существование бесконечно протяженных параллельных прямых.

Считалось, что аксиома о параллельных в том виде, в каком ее сформулировал Евклид, излишне сложна и ей недостает простоты других аксиом. Самого Евклида придуманный им вариант аксиомы о параллельных также не устраивал: недаром он обращался к этой аксиоме, лишь доказав все теоремы, какие только можно было доказать без нее.

Даже в античную эпоху математики неоднократно пытались решить проблему, связанную с аксиомой о параллельных Евклида. Эти попытки были двух типов. Одни пробовали заменить аксиому о параллельных какой-нибудь другой аксиомой, казавшейся им более очевидной. Другие старались, вывести аксиому Евклида из девяти других аксиом его геометрии. Если бы это удалось, то аксиома о параллельных превратилась бы в одну из теорем и всякие сомнения в ее истинности разом отпали бы. На протяжении двух тысячелетий не один десяток самых выдающихся математиков, не говоря уже о менее известных, пытались и заменить аксиому о параллельных и вывести ее из других аксиом. История аксиомы Евклида о параллельных длительна, изобилует техническими деталями, и мы не будем пересказывать ее здесь подробно, тем более что она не имеет прямого отношения к главной теме нашего повествования и неоднократно излагалась в других работах.{10}

1 ... 41 42 43 44 45 46 47 48 49 ... 80
Перейти на страницу:
На этой странице вы можете бесплатно скачать Математика. Поиск истины. - Морис Клайн торрент бесплатно.
Комментарии