Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Физика » 9. Квантовая механика II - Ричард Фейнман

9. Квантовая механика II - Ричард Фейнман

Читать онлайн 9. Квантовая механика II - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 41 42 43 44 45 46 47 48 49 ... 60
Перейти на страницу:

на п.

Окончательный итог таков: при любом l имеется набор возможных решений, которые мы обозначим Fn,l, где n>l+1. Каждое решение обладает энергией

Волновая функция состояния с такой энергией и с угло­выми квантовыми числами l и m имеет вид

где

Коэффициенты ak получаются из (17.50). Наконец-то в наших руках полное описание состояний атома водорода.

§ 5. Волновые функции водорода

Посмотрим же, что мы открыли. Состояния, которые удов­летворяют уравнению Шредингера для электрона в кулоновом поле, характеризуются тремя (причем целыми) квантовыми числами n, l, m. Угловое распределение амплитуды электрона может обладать только определенными формами, которые мы обозначим Yl,m. Они нумеруются числом l — квантовым числом полного момента количества движения я т«магнитным» квантовым числом, которое может меняться от -l до +l. При каждой угловой конфигурации возможны различные радиаль­ные распределения Fn,l(r) амплитуды электрона; они нумеруют­ся главным квантовым числом n, которое может меняться от l+1 до Ґ. Энергия состояния зависит только от n и растет с n. Состояние наинизшей энергии, или основное, является s-состоянием. У него l=0, n=1 и m=0. Это «невырожденное» состояние: имеется только одно состояние с такой энергией, а волновая функция у него сферически симметрична. Амплитуда того, что электрон обнаружится, достигает максимума в центре и монотонно спадает с удалением от центра. Эту электронную амплитуду можно изобразить этаким комочком (фиг. 17.6,а).

Фиг. 17.6. Наброски, отражающие общий харак­тер волновых функций водорода.

В заштрихованных местах ам­плитуды велики. Знаки плюс и минус — это относительные знаки амплитуд в каждой об­ласти.

Имеются и другие s-состояния, с большими энергиями; у них n=2, 3, 4, ... и l=0. Каждой энергии соответствует толь­ко одно состояние m=0, и все они сферически симметричны. Амплитуды этих состояний с ростом r один или несколько раз меняют знак. Имеется n-1 сферических узловых поверхностей, или мест, где y проходит через нуль. Например, 2s-состояние (l=0, n=2) выглядит так, как показано на фиг. 17.6, б. (Темные области указывают те места, где амплитуда велика, а знаки плюс и минус отмечают относительные фазы амплитуды.) Уровни энергии s-состояний показаны в первом столбце фиг. 17.7.

Фиг. 17.7. Диаграмма уров­ней энергии водорода.

Затем бывают р-состояния с l=1. Для каждого n (n равно или больше 2) существует тройка состояний с одинаковой энергией, одно с m=+1, другое с m=0, третье с m=-1. Уровни энергии отмечены на фиг. 17.7. Угловые зависимости этих состояний приведены в табл. 17.1. Так, при m=0, если амплитуда положи­тельна для углов q, близких к нулю, то при углах q, близких к 180°, она окажется отрицательной. Имеется узловая плос­кость, совпадающая с плоскостью ху. При n>1 бывают также конические узловые по­верхности. Амплитуда n=2, m=0 намечена на фиг. 17.6,в, а волновая функция n=3, m=0 — на фиг. 17.6, г.

Могло бы показать­ся, что поскольку т дает, так сказать, «ори­ентацию» в простран­стве, то должны наблю­даться еще такие же распределения, но с пи­ками вдоль оси х или вдоль оси у. Можно по­думать, что это скорее всего состояния с m=+1 и с m=-1. Однако это не так! Но зато раз у нас есть тройка состояний с одинаковыми энер­гиями, то любая линейная комбинация из этой тройки тоже будет стационарным состоянием с той же энергией. Оказы­вается, что «x»-состояние (по аналогии с «z»-состоянием, или состоянием с m=0, см. фиг. 17.6, в) это линейная комбинация состояний с m=+1' и с m=-1. Другая комбинация дает «y»-состояние. Точнее, имеется в виду, что состояния

если отнести их к своим осям, выглядят одинаково.

У d-состояний (l=2) для каждой энергии есть пять возмож­ных значений т; наинизшей энергией обладает n=3. Уровни показаны на фиг. 17.7. Угловые зависимости усложняются. К примеру, состояния с m=0 обладают двумя коническими узловыми поверхностями, так что при переходе от северного по­люса к южному волновая функция меняет фазы с + на — и обратно на +. Примерная форма амплитуды нарисована на фиг. 17.6,д и е для состояний с m=0 и n=3 и 4. И снова при больших n появляются конические узловые поверхности.

Мы не будем пытаться описывать другие последующие со­стояния. Подробное изложение волновых функций водорода вы найдете во многих книгах. Рекомендую вам особенно; L. Pauling, E.B.Wilson, Introduction to Quantum Mechanics, New York, 1935; R. B. Leightоn. Principles of Modern Physics, New York, 1959. В этих книгах вы найдете графики некоторых функций и графическое изображение многих со­стояний.

Хотелось бы упомянуть об одном особом свойстве волновых функций при высших l: при l>0 амплитуды обращаются в центре в нуль. Ничего в этом удивительного нет, ведь электрону трудно иметь большой момент, когда плечо момента очень мало. По этой причине чем l большe, тем дальше амплиту­ды «отталкиваются» от центра. Если вы посмот­рите, как радиальные функции F(r) меняются при малых r, то из (17.53) окажется, что

Такая зависимость от r означает, что при боль­ших l вам придется даль­ше отойти от r=0, чтобы получить заметную ампли­туду. Такое поведение, кстати, определяется чле­ном с центробежной силой в радиальном уравнении, так что все это применимо к любому потенциалу, который при малых r меняется медленнее, чем 1/r2, а таково большинство атомных потенциалов.

§ 6. Периодическая таблица

Теперь мы хотели бы применить теорию атома водорода к объяснению химической периодической таблицы элементов. В атоме элемента с атомным номером Z имеется Z электронов, которые удерживаются электрическим притяжением ядра, но при этом взаимно отталкиваются друг от друга. Чтобы полу­чить точное решение, пришлось бы решить уравнение Шредин­гера для Z электронов в кулоновом поле. Для гелия уравнение имеет вид

где С21 — лапласиан, который действует на r1, координату пер­вого электрона; С22 действует на r2, a r12=|r1-r2|. (Мы опять пренебрегаем спинами электронов.) Чтобы найти стационар­ные состояния и уровни энергии, следовало бы отыскать ре­шения вида

Геометрическая зависимость заключена в f — функции шести переменных — одновременных положений двух электронов. Аналитического решения никто не знает, хотя решения для низ­ших энергетических состояний и были найдены численными ме­тодами.

Когда электронов 3, 4 или 5, безнадежно пытаться получить точные решения. Поэтому было бы опрометчиво утверждать, что квантовая механика до конца объяснила периодическую таб­лицу. Но все же можно сказать, что даже с помощью довольно сомнительных приближений (и кое-какой последующей отделки) удается, по крайней мере качественно, понять многие хими­ческие свойства, проявляющиеся в периодической таблице.

Химические свойства атомов определяются в первую очередь их низшими энергетическими состояниями. Для отыскания этих состояний и их энергий мы воспользуемся следующей приближенной теорией. Во-первых, пренебрежем спином электрона, разве только что принцип запрета будет принят нами во вни­мание и мы будем считать, что каждое частное электронное состояние может быть занято только одним электроном. Это озна­чает, что на одной орбите не может оказаться больше двух электронов — один со спином, направленным вверх, другой — вниз. Затем мы в первом приближении пренебрежем деталями вза­имодействия электронов и будем считать, что каждый электрон движется в центральном поле, образуемом полями ядра и всех прочих электронов. Про неон, у которого 10 электронов, мы скажем, например, что каждый электрон в атоме неона испы­тывает влияние среднего потенциала ядра и оставшейся девятки электронов. Мы вообразим далее, что в уравнение Шредингера для каждого электрона мы подставляем V(r) то же поле 1/r, но только видоизмененное за счет сферически симметричной плотности заряда, возникшей от остальных электронов.

1 ... 41 42 43 44 45 46 47 48 49 ... 60
Перейти на страницу:
На этой странице вы можете бесплатно скачать 9. Квантовая механика II - Ричард Фейнман торрент бесплатно.
Комментарии