- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
9. Квантовая механика II - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Так что искомое выражение равно
Теперь надо возвысить биномы в степень и перемножить. Появятся члены со всеми степенями |+ у от нуля до r+s. Посмотрим, какие члены дадут r'-ю степень |+ ). Они всегда будут сопровождаться множителем типа |->s', где s'=2j-r'. Соберем их вместе. Получится сумма членов типа |+>r' |->s' с численными коэффициентами Аr' , куда входят коэффициенты биномиального разложения вместе с множителями С и S. Уравнение (16.65) тогда будет выглядеть так:
Теперь разделим каждое Аr'на множитель [(r'+s')lr'!s'!]l/2 и обозначим частное через Вr. Тогда (16.66) превратится в
[Можно просто сказать, что требование, чтобы (16.67) совпадало с (16.65), определяет Br’]
Если так определить Вr' , то оставшиеся множители в правой части (16.67) будут как раз состояниями. Итак, имеем
где s' всегда равняется r+s-r'. А это, конечно, означает, что коэффициенты Вr'и есть искомые матричные элементы
Теперь, чтобы найти Br', остается немного: лишь пробиться через алгебру.
Сравнивая (16.67) с (16.65) и вспоминая, что r'+s'=r+s, мы видим, что Br' — это просто коэффициент при ar'bs'в выражении
Осталась лишь нудная работа разложить скобки по биному Ньютона и собрать члены с данными степенями а и b. Если вы все это проделаете, то увидите, что коэффициент при аr'bs' в (16.70) имеет вид
Сумма берется по всем целым k, при которых аргументы факториалов больше или в крайнем случае равны нулю. Это выражение и есть искомый матричный элемент.
В конце надо вернуться к нашим первоначальным обозначениям j, m и m', пользуясь формулами
r=j+-m, r'=j+m', s=j-m, s'=j-m'. Проделав эти подстановки, получим уравнение (16.34) из § 4.
Добавление 2. Сохранение четности при испускании фотона
В § 1 мы рассмотрели испускание света атомом, который переходит из возбужденного состояния со спином 1 в основное состояние со спином 0. Если спин возбужденного состояния направлен вверх (m=+1), то атом может излучить вверх вдоль оси +z правый фотон или вдоль оси -z левый. Обозначим эти два состояния фотона |Rвв> и |Lвн>. Ни одно из них не обладает определенной четностью. Если оператор четности обозначить
Что же тогда будет с нашим прежним доказательством, что атом в состоянии с определенной энергией должен иметь определенную четность, и с нашим утверждением, что четность в атомных процессах сохраняется? Разве не должно конечное состояние в этой задаче (состояние после излучения фотона) иметь определенную четность? Да, должно, если только мы рассмотрим полное конечное состояние, в которое входят амплитуды излучения фотонов под всевозможными углами. А в § 1 мы рассматривали только часть полного конечного состояния.
Если вы хотите, можно рассмотреть только конечные состояния, у которых действительно определенная четность. Например, рассмотрим конечное состояние |yk>, у которого есть некоторая амплитуда а оказаться правым фотоном, движущимся вдоль оси +z, и некоторая амплитуда b оказаться левым фотоном, движущимся вдоль оси -z. Можно написать
Оператор четности, действуя на это состояние, дает
Это состояние совпадает с ±|yк> либо при b=a, либо при b=-a. Так что конечное состояние с положительной четностью таково:
а состояние с отрицательной четностью
Далее, мы хотим рассмотреть распад возбужденного состояния с отрицательной четностью на основное состояние с положительной четностью и на фотон. Если четность должна сохраниться, то конечное состояние фотона должно иметь отрицательную четность. Оно обязано быть состоянием (16.75). Если амплитуда того, что будет обнаружено | Rвв>, есть a, то амплитуда того, что будет обнаружено | Lвн>, есть -a.
Теперь обратите внимание на то, что получается, если мы проводим поворот на 180° вокруг оси у. Начальное возбужденное состояние атома становится состоянием с m=-1 (согласно табл. 15.2, стр. 129, знак не меняется). А поворот конечного состояния дает
Сравнивая это с (16.75), мы увидим, что при выбранной нами четности конечного состояния амплитуда того, что при начальном состоянии с m=-1 будет получен левый фотон, идущий в направлении +z, равна со знаком минус амплитуде того, что при начальном состоянии с m=+1 будет получен правый фотон, идущий в направлении -z. Это согласуется с результатами, полученными в § 1.
* Первоначально материал этого добавления входил в текст лекции, но потом мы поняли, что не стоит включать в нее такое подробное изложение общего случая.
* Тем более, что большая часть работы уже проделана, раз у нас есть общая матрица поворота (16.35).
* Отдачей, которую испытал Ne20* в первой реакции, можно пренебречь. Или, еще лучше, подсчитать и сделать поправку на нее.
* Детали вы найдете в добавлении, стр. 165.
* Мы не нормировали наши амплитуды и не умножали их на амплитуду распада в то или иное конечное состояние, но легко видеть, что наш результат верен, ибо, рассчитывая вторую из взаимоисключающих возможностей [см. (16.23)], мы получаем вероятность нуль.
* Заметьте, что мы всегда анализируем момент количества движения относительно направления движения частицы. Если бы мы стали интересоваться моментом количества движения относительно других осей, нам пришлось бы учесть возможность «орбитального» момента количества движения — от члена pXr. Так, мы не вправе говорить, что фотоны вылетают прямо из центра позитрония. Они могли вылететь, как два комка с обода вертящегося колеса. О таких подробностях не приходится задумываться, если проводить ось вдоль направления движения.
* При нашем нынешнем глубоком понимании мира нелегко ответить на вопрос—менее ли «материальна» энергия фотона, чем энергия электрона, ведь, как вы помните, все частицы ведут себя очень похоже. Единственное различие в том, что у фотона масса покоя равна нулю.
* Кое-кто может возразить, что все эти рассуждения неверны, потому что наши конечные состояния не обладают определенной четностью. В добавлении 2 в конце этой главы вы найдете другое доказательство, которое вас удовлетворит.
* Когда мы переводим х, у, z в -х, -у, -z, то можно подумать, что все векторы перевернутся. Это верно для полярных векторов, таких, как смещения и скорости, но не для аксиальных векторов наподобие момента количества движения, да и любых векторов, представляющих собой векторное произведение двух полярных векторов. Компоненты аксиальных векторов при инверсии не меняются.
Глава 17
АТОМ ВОДОРОДА И ПЕРИОДИЧЕСКАЯ ТАБЛИЦА
§ 1. Уравнение Шредингера для атома водорода
§ 2. Сферически симметричные решения
§ 3. Состояния с угловой зависимостью
§ 4. Общее решение для водорода
§ 5. Волновые функции водорода
§ 6. Периодическая таблица
§ 1. Уравнение Шредингера для атома водорода
Самым замечательным успехом в истории квантовой механики было объяснение всех деталей спектров простейших атомов, а также периодичностей, обнаруженных в таблице химических элементов. В этой главе в нашем курсе квантовой механики мы наконец-то подойдем к этому важнейшему достижению и расскажем об объяснении спектра атомов водорода. Кроме того, здесь мы расскажем и о качественном объяснении таинственных свойств химических элементов. Для этого мы подробно изучим поведение электрона в атоме водорода: в первую очередь мы рассчитаем его распределения в пространстве, следуя тем представлениям, которые были развиты в гл. 14.