- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Краткий курс по статистике - Коллектив авторов
Шрифт:
Интервал:
Закладка:
Средняя величина – это наиболее типичное для совокупности значение признака, объем признака совокупности, распределенный поровну между единицами совокупности.
Варианты – различные значения признака, наблюдаемые у членов совокупности. Частоты – числа, показывающие, сколько раз встречается каждый вариант в совокупности. Относительные частоты – отношение соответствующей частоты к объему совокупности.
2. Для осредняемого признака определятся средняя величина () – показатель, рассчитываемый сопоставлением абсолютных или относительных величин.
Чтобы получить требуемую среднюю величину, необходимо правильно определить показатели, которые нужно соотнести. Данное исходное соотношение отражает сущность вычисляемой средней величины. Для каждой средней величины может быть только единственное исходное соотношение.
Средняя величина характеризует совокупность в целом и относится к единице совокупности как ее характеристика; отражает влияние всех факторов, влияющих на исследуемое явление, и является для них равнодействующей.
3. Выделяют следующие условия применения средних величин:
✓ однородность исследуемой совокупности. Если некоторые подверженные влиянию случайного фактора элементы совокупности имеют значительно отличающиеся от остальных величины изучаемого признака, то данные элементы повлияют на размер средней для данной совокупности. В этом случае средняя не будет выражать наиболее типичную для совокупности величину признака;
✓ если исследуемое явление неоднородно, требуется его разбивка на содержащие однородные элементы группы. В данном случае рассчитывают средние по группам – групповые средние, выражающие наиболее характерную величину явления в каждой группе, а затем рассчитывается общая средняя величина для всех элементов, характеризующая явление в целом. Она рассчитывается как средняя из групповых средних, взвешенных по числу включенных в каждую группу элементов совокупности;
✓ достаточное количество единиц в совокупности. При применении выборочного наблюдения именно это условие становится определяющим;
✓ максимальное и минимальное значения признака в изучаемой совокупности. Если изменчивость признака вызвана случайными факторами (в случае больших отклонений между крайними значениями и средней), то, возможно, крайние значения нехарактерны для совокупности и их следует исключить из анализа из-за влияния на размер средней величины.
4. Средние величины подразделяются на степенные средние (средняя степенная, средняя арифметическая, средняя гармоническая и т. д.) и структурные средние (мода, медиана).
Осредняемый признак – признак, по которому находится средняя (х). Величина осредняемого признака у любой единицы статистической совокупности составляет его индивидуальное значение, или варианты (х1, х2, x3, … хn). Частота осредняемого признака – повторяемость индивидуальных значений признака (f).
Один из наиболее распространенных видов средней – средняя арифметическая – исчисляется, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности. Для вычисления средней арифметической величины сумму всех уровней признака делят на их число.
Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений; исчисленная таким образом величина – средняя арифметическая взвешенная.
8. Основные виды средних величин
1. Для определения средней арифметической необходим ряд вариантов и частот, т. е. значения х и f
Средняя гармоническая взвешенная тождественна средней арифметической: когда произведения fx одинаковы или равны единице (m = 1), то применяется средняя гармоническая простая:
где х1 – отдельные варианты.
Если имеется n коэффициентов роста, то формула среднего коэффициента:
Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего. Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число:
Средняя квадратическая взвешенная:
2. Выделяют следующие основные виды средних величин:
☞ по наличию признака-веса: невзвешенная и взвешенная;
☞ охвату совокупности: групповая, общая;
☞ форме расчета: средняя арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т. д. величины.
Данные средние выводятся из формулы степенной средней:
где xi – величины, для которых исчисляется средняя;
– средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений;
n – частота (повторяемость индивидуальных значений признака).
При при k = – средняя гармоническая; при k = 0 – средняя геометрическая; при k = 2 – средняя квадратическая.
При k = 1 формула расчета степенной средней превращается в формулу расчета средней арифметической:
3. Выделяют следующие основные виды средней арифметической величины: средняя арифметическая невзвешенная, средняя арифметическая взвешенная.
Средняя арифметическая невзвешенная величина наиболее распространена; рассчитывается путем деления значений признака каждого элемента совокупности на число элементов совокупности:
Средняя арифметическая взвешенная величина рассчитывается, если имеются сведения о количестве или доле единиц совокупности каждым значением осредняемого признака:
Выделяют следующие основные свойства средней арифметической величины:
☞ сумма всех отклонений каждого значения признака от среднего арифметического значения равна нулю:
Если отклонения каждого из вариантов от средней величины суммировать, то получится ноль, что свойственно арифметическим невзвешенным и взвешенным средним значениям;
☞ произведение каждого значения признака на соответствующую ему частоту равно произведению средней величины на сумму частот:
Средняя величина есть результат распределения объема совокупности поровну между всеми ее элементами;
☞ сумма квадратов отклонения индивидуальных значений признака от средней арифметической меньше суммы квадратов отклонения от любой другой величины:
если увеличить или уменьшить все варианты осредняемого признака на какое-либо одно и то же число, то объем средней соответственно увеличится или уменьшится на это же число;
☞ если увеличить или уменьшить все варианты осредняемого признака в какое-либо число раз, то объем средней соответственно увеличится или уменьшится в это же количество раз;
☞ от увеличения или уменьшения веса каждого варианта признака в какое-либо число раз величина средней не изменится. Применение данного свойства удобно, если необходимо проанализировать совокупность со значительным количеством элементов, а частота элементов выражена многозначными числами. Если частоты элементов равны между собой, то среднюю можно рассчитать как невзвешенную;
☞ вследствие предыдущего свойства величина средней зависит не от абсолютных значений весов отдельных элементов, а от их доли в общей сумме весов, т. е. если не известны абсолютные выражения весов элементов, а известны пропорции между ними, то они могут использоваться для расчета средней;
☞ средняя арифметическая совокупности, состоящей из постоянных величин, равна этой постоянной:
4. Приведем также формулы расчета средней гармонической, средней геометрической, средней квадратической и средней степенной величин.
Формула расчета степенной средней:
где xi – величины, для которых исчисляется средняя;
– средняя, где имеет место осреднение индивидуальных значений;

