- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (РИ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Риманова кривизна К связана с тензором кривизны формулой:
,
где
,
причём параметры u, u выбраны так, что площадь параллелограмма, построенного на векторах , равна 1.
В двумерном случае К совпадает с полной кривизной (Theorema egregium К. Ф. Гаусса, 1827), при этом для области G, ограниченной простой замкнутой кривой Г, имеющей геодезическую кривизну k, справедлива так называемая формула Гаусса-Бонне:
,
в частности, для треугольника, образованного отрезками геодезических
,
где А, В, С — величины углов треугольника. Для замкнутого (т. е. без границы) двумерного риманова пространства R его эйлерова характеристика c(R) пропорциональна интегралу римановой кривизны:
.
Эта формула обобщена на случай чётно-мерного замкнутого риманова пространства, в котором интегрируется некоторая функция компонент тензора кривизны.
Если в каждой точке риманова пространства кривизна не зависит от направления двумерной поверхности, то она не меняется и от точки к точке, т. е. пространство имеет постоянную кривизну. Представляют интерес также (в частности, для описания механических систем с циклическими координатами) римановы пространства со специальной структурой тензора кривизны; они суть обобщение пространств постоянной кривизны и имеют достаточно обширную группу движений. Таковы, например, симметрические пространства, характеризующиеся тем, что их тензор кривизны не меняется при параллельном перенесении, субпроективные пространства, характеризующиеся специальной координатной системой, в которой геодезические описываются линейными уравнениями, и др.
Риманова кривизна играет важную роль в геометрических приложениях Р. г., тем более, что на всяком многообразии можно ввести некоторую риманову метрику. Так, например, топологическое строение полных римановых пространств (т. е. пространств, в которых всякая геодезическая бесконечно продолжаема) зависит от свойств его кривизны: всякое полное односвязное n-мерное риманово пространство гомеоморфно n-мерному евклидову пространству, если его кривизна во всех точках и по всем направлениям неположительна и гомеоморфна n-мерной сфере единичного радиуса, если его кривизна К удовлетворяет неравенствам , где d — некоторая постоянная. От величины кривизны полного риманова пространства R зависит и его диаметр d — точная верхняя грань расстояний между точками R, определяемых внутренней метрикой R: например, если К ³ Ko > 0, то d, если же , то R — сфера радиуса .
Метрическая связность. Параллельное перенесение вдоль кривой L с концами А, В задаёт изометричное (т. е. сохраняющее расстояния) преобразование ti касательного пространства EA в точке А в касательное пространство EB в точке А. Дифференциал преобразования ti в точке А, т. е. главная линейная часть изменения ti; при переходе из А (xi) в близкую точку (xi + dxi), определяет некоторый геометрический объект, называется римановой связностью, ассоциированной с данным параллельным перенесением. Аналитически эта связность выражается системой линейных дифференциальных форм
, i, j, …, n.
Однако в римановом пространстве R можно определить и другие связности, такие, что ассоциированные с ними параллельные перенесения также сохраняют метрический тензор; они называются метрическими связностями и определяются аналогичными коэффициентами , но уже не симметричными по индексам j, k и не выражающимися (подобно символам Кристоффеля) только через тензор gij и его производные. Отличие метрической связности от римановой оценивается так называемым тензором кручения:
,
геометрический смысл которого иллюстрируется следующим образом. Рассмотрим в двумерном римановом пространстве метрической связности малый треугольник, образованный отрезками геодезических длины а, b, с и углами А, В, С. Тогда главная часть проекции кручения в точке А на сторону AB равна отношению величины с — acosB — bcosA к площади треугольника, а главная часть проекции кручения на перпендикуляр к AB — величине asinB — bsinA, деленной на площадь треугольника. Т. о., в римановом пространстве нулевого кручения имеют место теоремы косинусов и синусов обыкновенной тригонометрии с точностью до величин, малых в сравнении с площадью треугольника.
Кривые, касательный вектор к которым переносится вдоль них параллельно, называются геодезическими соответствующей связности; они совпадают с римановыми геодезическими, если тензор
кососимметричен по всем индексам.
Подпространства. На m-мерном подмногообразии М риманова пространства R, задаваемом уравнениями xi = xi (u1,..., um), причём ранг матрицы равен m, имеет место Р. г., определяемая метрическим тензором
М называется римановым подпространством пространства R.
Достаточно малая область m-мерного риманова пространства R может быть погружена в евклидово пространство достаточно большой размерности N (т. е. допускает сохраняющее длины отображение на подмногообразие этого пространства). Известно, что ; вопрос о минимальном значении N в общем случае ещё не решен, однако если коэффициенты метрической формы gij пространства R являются аналитическими функциями (т. е. разлагаются в сходящиеся степенные ряды), то . Относительно задачи погружения в целом (представляющей интерес для физики калибровочных полей) известно ещё меньше.
Наиболее подробно исследованы погружения двумерных римановых пространств. Так, например: 1) двумерное полное риманово пространство положительной кривизны К. погружается в виде замкнутой выпуклой поверхности (овалоида) в трёхмерное риманово пространство кривизны не меньшей К [проблема Г. Вейля (1916), решенная немецким математиком Х. Леви (1937) и А. Д. Александровым (1941) для погружения в евклидово пространство и А. В. Погореловым (1957) для риманова пространства], причём любые два погружения, имеющие общую точку и общее соприкасающееся пространство в ней, совпадают [т. е. овалоид однозначно определён своей метрикой, немецкий математик С. Э. Кон-Фоссен (1927), А. В. Погорелов (1948)]. 2) Двумерное полное риманово пространство отрицательной кривизны K £ Ko < 0 не допускает погружения в виде регулярной поверхности [советский математик Н. В. Ефимов (1963), частный случай плоскости Лобачевского (К = —1) разобран Д. Гильбертом (1901)]. 3) Двумерное риманово пространство, гомеоморфное тору, допускает погружение в четырёхмерное евклидово пространство [советский математик Э. Г. Позняк (1973)].
Приложения и обобщения римановой геометрии. 1) Поскольку Р. г. определяется заданием дважды ковариантного симметричного тензора, постольку всякую физическую задачу, сводящуюся к изучению такого тензорного поля, можно формулировать как задачу Р. г. В частности, к тензорным полям такого типа относятся различные физические величины, характеризующие упругие, оптические, термодинамические, диэлектрические, пьезомагнитные и другие свойства анизотропных тел. При этом симметрия коэффициентов gij является отражением одного из фундаментальных физических законов — закона взаимности. Так, задача о теплопроводности анизотропного тела, решенная ещё Риманом (1861), явилась первым приложением Р. г.
2) Рассмотрение конфигурационного пространства в механике системы с n степенями свободы позволило представить в ясной геометрической форме ряд механических задач. Так, например, траектории свободного (т. е. в отсутствии обобщённых сил) движения голономной механической системы с кинетической энергией

