- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (ХИ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Однако только на основе квантовой механики удалось объяснить природу химической связи, точно рассчитать энергию связи для простейшей молекулы — молекулы водорода (нем. учёные В. Гейтлер и Ф. Лондон, 1927) — и многие физические параметры др. двухатомных и нескольких многоатомных молекул (H2 O, HF, LiH, NH3 и др.), в том числе межатомные расстояния, энергии образования из атомов, частоты колебания в спектрах, электрические и магнитные свойства, насыщаемость и направленность связей.
Новейший этап развития Х. характеризуется быстрой разработкой пространственных представлений о строении вещества, стереохимических концепций. Ещё в 1874—75 Ж. А. Ле Бель и Вант-Гофф высказали предположение, что 4 атома или радикала, связанные с атомом углерода, расположены не в одной плоскости, а в пространстве, по вершинам тетраэдра, в центре которого находится атом углерода. В связи с этим было расширено представление об изомерии , установлено несколько её видов и были заложены основы стереохимии . Для многих молекул были определены их стабильные пространственные конфигурации; в дальнейшем исследователи установили лабильные конформации молекул, возникающие в результате некоторого затруднения свободного вращения атомных групп вокруг простых связей (см. Конформационный анализ ).
Современная теоретическая Х. основывается на общефизическом учении о строении материи, на достижениях квантовой теории, термодинамики и статистической физики. Применение методов квантовой механики к решению химических задач привело к возникновению квантовой Х. Её задачей стало решение волнового уравнения Шредингера для многоэлектронных систем молекул. Одним из первых результатов была теория валентных связей, ещё широко использовавшая традиционное представление о паре электронов как носительнице химической связи (Гейтлер, Лондон, Дж. Слэтер , Полинг). Затем был разработан метод молекулярных орбиталей (МО), рассматривающий целостную электронную структуру молекулы; каждая молекулярная орбиталь (волновая функция) учитывает вклад в неё всех электронных орбиталей атомов (см. Молекулярных орбиталей метод ). Наиболее распространённый вариант метода МО основанный на приближённом описании молекулярных орбиталей через линейную комбинацию атомных орбиталей (ЛКАО МО). В ряде случаев для простейших молекул на основе использования новейшей вычислительной техники могут быть проведены весьма сложные расчёты молекул без всяких предварительных упрощений задачи. На основе указанного метода рассчитываются энергетические и электронные параметры молекул (распределение электронной плотности, величина энергии, длина и порядок связей, некоторые физические свойства соединений). Метод МО получил ныне распространение в теории органической Х. В неорганической Х. на основе его сочетания с теорией кристаллического поля (Х. Бете ) возникла теория поля лигандов.
Квантовохимическое рассмотрение кинетических соотношений, установленных Аррениусом и Вант-Гоффом, привело к возникновению учения об абсолютных скоростях химических реакций, являющегося основой химической кинетики. Это позволило вычленить очень важную теоретическую проблему современной Х. — вопрос о природе переходного состояния, промежуточного активированного комплекса , внутри которого происходят во многом ещё неясные процессы перестройки структуры молекул.
Детальное изучение кинетики и механизмов реакций, исследование элементарных актов химических взаимодействий — важная задача химической физики. Большое значение приобрели работы в области цепных реакций , основы теории которых были разработаны Н. Н. Семеновым и С. Хиншелвудом . Кинетические исследования сыграли важную роль в развитии технологии переработки нефти, горения топлива, синтеза высокомолекулярных веществ. Показана возможность химической фиксации азота при обычных температуре и давлении, что может существенно изменить будущую технологию.
Ядерные превращения и сопутствующие им физико-химические явления, продукты ядерных реакций, радиоактивные изотопы, элементы и вещества служат объектами изучения ядерной химии и радиохимии . Работы в этом направлении имеют большое значение для получения и извлечения атомного сырья, разделения изотопов, использования расщепляющихся материалов.
Взаимодействие вещества с излучением и частицами высоких энергий различной природы, приводящее к химическим превращениям, изучается радиационной Х. Воздействие радиации инициирует многие процессы, в том числе синтез высокомолекулярных соединений из мономеров. В частности, под действием света происходят фотохимические реакции. Фотохимия исследует как связывание энергии электромагнитного излучения (например, в фотосинтезе, осуществляемом зелёными растениями), так и многочисленные реакции синтеза и распада, изомеризации и перегруппировок, возникающие в ходе указанного взаимодействия. Для промышленного производства перспективно использование мощной энергии лазера .
В электрохимии накоплен большой материал по исследованию электролитов, их электропроводности, электрохимических процессов, создана электрохимическая кинетика, изучаются неравновесные электродные потенциалы, процессы коррозии металлов, разрабатываются новые химические источники тока . Успехи теоретической электрохимии позволили дать более прочную научную основу многим промышленным электрохимическим процессам.
Влияние магнитных полей на химическое поведение молекул рассматривается магнетохимией . Область термохимических исследований расширилась в результате изучения взаимодействия вещества с плазмой , в частности в целях использования в плазмохимической технологии. Становление плазмохимии относится к 60-м гг., когда были выполнены основополагающие работы в СССР, США и ФРГ.
Химические превращения совершаются во всех агрегатных состояниях вещества — в жидком, газообразном и твёрдом. Всё большую актуальность приобретают исследования химических реакций твёрдых тел (топохимические реакции ).
В современной Х. накапливаются данные о химической эволюции вещества во Вселенной, что позволяет составить общую картину эволюции природы. Современная ядерная физика и астрофизика сформировали представление о возникновении химических элементов. На основе изучения Х. метеоритов, вулканических земных пород, лунного грунта постепенно вырисовывается картина химической дифференциации вещества на планетной стадии развития, в частности геохимической эволюции (см. Геохимия , Космохимия ).
Обнаружение сложных органических молекул в межзвёздном пространстве, в метеоритах и древнейших горных породах Земли, а также модельные опыты по синтезу сложных органических веществ из простейших соединений (CH4 , CO2 , NH3 , H2 O) в условиях искрового разряда, радиоактивного и ультрафиолетового облучения позволили представить этапы химической эволюции материи, предшествовавшие возникновению жизни (см. также Происхождение жизни ).
Геохимия вулканогенных и осадочных пород, гидрохимия , Х. атмосферы, биогеохимия постепенно формируют представления о планетарных миграциях химических элементов, биохимия — о жизненных циклах. На основе этих данных всё более наполняется конкретным содержанием учение В. И. Вернадского о решающей роли процессов жизнедеятельности для понимания судьбы химических элементов на нашей планете.
Большие успехи сделала органическая химия. Так, разработаны автоматические методы синтеза многих белков; установлена структура ряда важных природных веществ — тетродотоксина, гемоглобина, аспартат-аминотрансферазы, содержащей 412 аминокислот, и др.; синтезированы сложнейшие природные соединения — хинин, витамин B12 и даже хлорофилл. Огромное влияние оказала органическая химия на развитие молекулярной биологии. Органическая химия легла в основу создания мощной индустрии тяжелого органического синтеза.
Химия полимеров, которая сформировалась в самостоятельную химическую дисциплину лишь в 30-х гг., изучает весь комплекс представлений о путях синтеза высокомолекулярных соединений, их свойствах и превращениях, а также о свойствах тел, построенных из макромолекул. Для современного этапа химии полимеров характерно углублённое изучение механизмов каталитической полимеризации, вызываемой металлоорганическими соединениями, в частности синтеза стереорегулярных полимеров, исследование микроструктуры высокомолекулярных соединений. Установлено, что свойства полимеров зависят не только от химического состава, строения и размеров макромолекул, но и в не меньшей степени от их взаимного расположения и упаковки (надмолекулярной структуры). Важным достижением явилось создание термостойких полимеров (кремнийорганических, полиимидов и др.). Успехи химии полимеров позволили создать такие важнейшие отрасли химической промышленности как производства пластмасс, синтетического каучука, химических волокон, лакокрасочных материалов, ионитов, клеёв и др.

