- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Быстрая математика: секреты устного счета - Билл Хэндли
Шрифт:
Интервал:
Закладка:
√54756 =
Во-первых, разобьем попарно цифры и получим три пары цифр. Искомым корнем будет трехзначное число.
Теперь оценим приближенное значение корня из числа, образованного цифрами из первой пары. Речь в данном случае идет об одном числе: 5. В качестве приближения для корня из 5 берем 2 (2 х 2 = 4).
Запишем 2 в качестве первой цифры нашего ответа. Удвоим ее, чтобы получить делитель (2 х 2 = 4).
Теперь наше решение выглядит так:
Возведем в квадрат первую цифру ответа, запишем результат внизу и вычтем его из числа, составленного из цифр первой пары:
22 = 4
5 – 4 = 1
Переносим 1 к следующей цифре. Получаем новое рабочее число 14.
Разделим 14 на наш делитель 4. Ответом будет 3 с остатком 2 (3 х 4 = 12). Переносим остаток к следующей цифре. Наше следующее рабочее число — 27.
Выполняем перекрестное умножение с цифрами ответа, за исключением первой, то есть с цифрой 3.
32 = 9
Вычтем результат из рабочего числа:
27 — 9 = 18
Разделим 18 на 4 и получим в ответе 4 с остатком 2. Таким образом, 4 является последней цифрой ответа. Все другие цифры, которые мы теперь будем получать, относятся к дробной, то есть после десятичной запятой, части ответа. Переносим остаток 2.
Наше очередное рабочее число — 25.
Выполняем перекрестное умножение с цифрами ответа, за исключением первой:
4 х 3 = 12
12 х 2 = 24
Вычитаем 24 из рабочего числа (25) и получаем в результате 1. Делим 1 на 4. Получаем в ответе 0 с остатком 1. Переносим 1 к последней цифре. Теперь нашим рабочим числом является 16.
Выполняем перекрестное умножение:
0 х 3 = 0
42 = 16
Вычитаем 16 из нашего рабочего числа и получаем в ответе 0. Остатка нет.
И в данном примере 54756 является точным квадратом. Его квадратный корень — 234.
Если бы мы получили остаток, то просто перенесли бы его к следующему числу и продолжили процесс до того количества знаков после запятой, которое нам требуется.
Сравнение методов
Каким был бы наш ответ, если бы мы оценивали приближенное значение корня посредством метода, описанного в предыдущей главе?
Определяем 2 в качестве оценки для первой цифры ответа. Следующие две цифры автоматически становятся нулями. Первой оценкой искомого корня является 200.
Разделим 54756 на 200. Сначала разделим на 100, а потом на 2.
54756: 100 = 547,56
547: 2 = 273
Находим среднее для 200 и 273, получим 236. Мы могли бы округлить в сторону уменьшения до 235 — на единицу больше, чем истинный ответ, что соответствует ошибке в размере примерно 0,5 процента. Такая точность вполне приемлема для большинства ситуаций. Однако, если вы желаете получить точное значение корня, тогда метод перекрестного умножения является самым простым из всех известных мне.
Попробуйте решить следующие примеры самостоятельно:
а) √3249 = __; б) √2116 = __; в) √103041 = __
Ответы:
а) 57; б) 46;
Решим пример в) вместе:
√103041 =
Разобьем цифры числа на пары:
Есть три пары цифр, поэтому и в ответе будет три цифры в целой части.
Вычисляем приближенное значение квадратного корня из числа, образованного из цифр первой пары, то есть из числа 10. 3 на 3–9. 4 не годится, потому что 4 в квадрате превышает 10. Значит, первой цифрой ответа будет 3. Таким образом, нашим делителем является 6.
3 в квадрате дает 9. Поделив 10 на 9, получаем остаток 1. Переносим его к следующей цифре. Это дает нам новое рабочее число — 13.
Делим 13 на делитель 6:
13: 6 = 2 r1
Следующая цифра ответа — 2, а рабочее число — 10.
Выполняем перекрестное умножение с цифрой 2 и получаем 4. Вычтем 4 из рабочего числа:
10 — 4 = 6
Делим 6 на 6.
6: 6 = 1
1 — это последняя цифра целой части нашего ответа. У нас нет остатка для переноса.
Нашим новым рабочим числом будет 4. Выполняем перекрестное умножение. Такое умножение для числа 21 дает в ответе 4 (2 х 1 = 2, 2 х 2 = 4). Вычтем 4 из 4 и получим в результате 0.
Новым рабочим числом является 1.
Выполняем перекрестное умножение:
0 х 2 = 0
12 = 1
Вычтем 1 из 1. Нашим последним результатом является 0, поэтому 103041 — точный квадрат. Квадратный корень из этого числа равен 321.
Немного попрактиковавшись, вы сможете выполнять все вышеприведенные вычисления в уме, что произведет большое впечатление на окружающих.
Вопрос читателя
Один читатель спросил меня, как бы я находил квадратный корень из числа 2401.
После разбивки цифр на пары задача выглядит следующим образом:
Мы имеем две пары цифр, поэтому в ответе будут две цифры.
Читатель спрашивает: «Когда я беру 4 в качестве приближения квадратного корня из 24 (4 х 4 = 16), то получаю в качестве делителя 8, а затем, вычитая 16 из 24, получаю 8, которое после переноса к следующей цифре 0 дает 80, а 80 делится на 8 десять раз. Что я делаю не так?»
Есть небольшой нюанс. Поскольку 10 не является цифрой, мы уменьшаем 10 на 1, получая в качестве второй цифры ответа 9, а также остаток 8, который мы переносим к следующей цифре 1, имея в результате 81.
Выполняем перекрестное умножение с цифрой 9 (9 в квадрате), что дает в ответе 81. Вычтем 81 из текущего рабочего числа (81).
81 – 81 = 0
Итак, мы имеем нулевой остаток. Ответ (49) является точным квадратным корнем.
Затем читатель спросил, как бы я вычислял следующий квадратный корень:
√23222761 =
Разбиваем цифры на пары и получаем:

