- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Быстрая математика: секреты устного счета - Билл Хэндли
Шрифт:
Интервал:
Закладка:
Теперь вы, вероятно, вполне в состоянии использовать метод на практике. Ниже вам предлагаются примеры для самостоятельного решения. Проверьте ответы.
а) 17 х 17 = 289; б)154 х 23 = 3542; в) 32 х 41 = 1312; г) 46 х 42 = 1942
Один из ответов является неправильным. Я не скажу вам какой. Замечу только, что выбрасывание девяток также позволит определить ошибку. Попробуйте выполнить двойную проверку.
Используя любой из описанных методов, будь то выбрасывание девяток или одиннадцати, я иногда предпочитаю выполнять дополнительную проверку, а именно — путем оценки приближенного значения, получаемого в ответе.
Все эти методы являются очень полезными, особенно если вы работаете с числами в школе или на рабочем месте.
Глава 17
Приближенное значение квадратного корня
При возведении числа в квадрат мы умножаем его на самого себя. Например, 4 в квадрате равно 16, поскольку 4, умноженное на 4, дает 16.
Нахождение квадратного корня — это процесс, обратный возведению в квадрат. Чтобы найти квадратный корень из числа 16, необходимо определить число, которое, будучи умноженным на самого себя, даст в результате 16. Ответом, разумеется, является 4. Подобным образом квадратным корнем из 25 является 5, поскольку 5 на 5 будет 25.
Каким будет квадратный корень из 64? Ответом служит 8, поскольку 8 х 8 = 64.
А как насчет квадратного корня из 56? Здесь задача потруднее, поскольку целого числа в качестве квадратного корня из 56 не существует. 7 на 7 дает 49, которое меньше, чем 56, а 8 на 8 будет 64, которое больше, чем 56. Ответ, таким образом, находится где-то между 7 и 8. Оценку величины квадратного корня мы проводим следующим образом. Выбираем то число, чей квадрат чуть меньше числа, с которым мы работаем — в данном случае 56, — и делим второе на первое.
В рассматриваемом случае берем 7, чей квадрат (49) чуть меньше 56. 8, к примеру, не годится на данную роль, поскольку его квадрат (64) больше, чем 56.
Теперь делим 56 на 7 и получаем в ответе 8.
Берем среднее между 7 и 8. Таким средним является 7,5. (Один из способов нахождения среднего для нескольких чисел состоит в том, чтобы разделить сумму этих чисел на их количество.) Данный ответ несколько превышает требуемый, что можно проверить несложным вычислением (7,5 х 7,5 = 56,25). Округление до 7,48 дает более высокую точность.
Рассматриваемый ответ (7,48) является точным до двух знаков после запятой. Наш первый ответ (7,5) является точным до одного знака после запятой. Очень часто такой точности вполне достаточно.
Для обозначения квадратного корня используют символ J~. Его ставят перед числом, из которого желают извлечь квадратный корень. У16 = 4 означает, что квадратный корень из 16 равен 4.
Рассмотрим пример:
√70 =
Прежде всего попытаемся угадать ближайшее число, являющееся округлением искомого корня.
√70 ~= 8 (8 х 8 = 64)
Разделим исходное число на полученное приближенное целое значение.
70: 8 = 8,75
Теперь разделим пополам разницу между первой оценкой (в данном случае числом 8) и результатом деления числа на его первую оценку, то есть 8,75. Разница равна:
8,75 — 8 = 0,75
Разделив пополам эту разницу, получим:
0,75: 2 = 0,375
И наконец, прибавим полученный результат к первоначальной оценке (8):
8 + 0,375 = 8,375
Полученный таким образом ответ всегда будет слегка больше требуемого, поэтому округлим его в сторону уменьшения. В данном случае возьмем в качестве требуемого округления 8,37. Данный ответ вычислен с ошибкой в пределах 0,2 процента.
Попробуем решить еще один пример. Как бы мы вычисляли квадратный корень из 29?
√29 =
Выбираем 5 в качестве первой оценки (5 х 5 = 25). Делим 29 на 5, с тем чтобы получить более точное приближенное значение.
29 делится на 5 пять раз с остатком 4. 40 (остаток 4, умноженный на 10) делится на 5 восемь раз без остатка. Получаем в результате деления 5,8.
29: 5 = 5,8
Разность между 5 и 5,8 равна 0,8. Половина от 0,8 равна 0,4. Прибавим это к 5 — нашей первой оценке искомого квадратного корня — и получим более точную оценку: 5,4.
Ответом является 5,385, однако 5,4 предоставляет точность до одного знака после запятой. Мы имеем ошибку величиной примерно в 0,2 процента. Такая точность является достаточной в большинстве случаев.
Попробуем решить еще один пример:
√3125 =
Разобьем число на пары цифр, начиная с крайней правой:
Каждой паре цифр в числе, из которого извлекается квадратный корень, соответствует одна цифра в целой части ответа.
В данном примере в ответе будет двузначное число, не принимая в расчет цифры после запятой.
Если пара цифр является неполной, то есть когда цифр перед запятой, например, пять и у нас имеется две пары и одна (крайняя левая) цифра, эта единичная цифра приравнивается к паре.
Чтобы вычислить первую цифру в ответе, оценим квадратный корень из числа, образованного из первой пары цифр. Первым приближением квадратного корня из 31 служит 5 (5 х 5 = 25). Последующими цифрами в первом приближении квадратного корня у нас всегда будут нули. Так как в ответе нужна еще одна цифра, мы добавляем к 5 один нуль и получим 50 в качестве первого приближения корня.
Чтобы разделить на 50, делим сначала на 10, а потом на 5:
3125: 10 = 312,5
Теперь делим на 5 и получаем 62,5.
Найдем разницу и разделим ее пополам:
62,5 — 50 = 12,5
12,5: 2 = 6,25
Округляем в меньшую сторону до целого числа и прибавляем к первой оценке:
50 + 6 = 56
√3125 = 56 ОТВЕТ
Воспользовавшись калькулятором, получим:
√3125 = 55,9
Ответ, который мы получили расчетом, вычислен с ошибкой, не превышающей 0,2 процента. Если бы мы не округляли 6,25 до 6, ошибка все равно не превышала бы 1 процент.
Приведенные вычисления можно легко выполнить в уме. Вместе с тем большинство людей не умеют вычислять квадратные корни даже на бумаге.
Вычисления в уме
Решим следующую задачу в уме.
Чему равен квадратный корень из 500 (√500)?
Прежде всего разобьем число на пары цифр. Сколько пар у нас получается? Две (одна неполная). Поэтому в ответе будут две цифры.
Какая первая пара цифр? Речь идет

