Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных - Андрей Юрьевич Журавлёв
Шрифт:
Интервал:
Закладка:
Во-вторых, хлоропласты – это несомненные потомки свободно живущих цианобактерий. Сегодня известно, что эти цианобактерии были близкими родственниками одноклеточных шаровидных хроококков – обычных обитателей пресных и соленых вод, нередко вызывающих их «цветение». Хроококки улавливают в дневное время азот, для чего используют запасенные ночью полисахариды и крахмал (не многие другие цианобактерии на это способны). Обретение фотосимбионта оказалось выгодным вдвойне: сразу – и органические запасы, и азотистые «удобрения». Как и в случае с митохондрией, часть генетической информации новой органеллы была передана ядру, геном которого у растений почти на 20 % состоит из генов цианобактерии.
Что касается происхождения прочих органелл, то здесь пока можно поставить не точку, а лишь многоточие. Было ли когда-то и ядро самостоятельным организмом? Пока неизвестно: у него одна мембрана, к тому же пористая. Ничего похожего нет ни у архей, ни у бактерий. А может быть, в формировании ядра помогли вирусы? Двухцепочечный поксвирус (от англ. pox – оспа) облачен в мембрану, проницаемую для РНК и ДНК, – чем не предтеча пористой ядерной мембраны? У него есть и энзимы, характерные только для эукариот. Неясно и происхождение ундулиподий – двигательных органелл. Когда-то их предков пытались разглядеть среди спирохет – бактерий, которые относительно быстро перемещаются и легко внедряются в самые разные клетки (вызывая у людей сифилис, маниакально-депрессивные психозы и другие малоприятные последствия). Спирохеты, действуя синхронно, как гребцы на галере, способны, например, передвигать в кишечном тракте термита трихомонад. Однако эти бактерии отличаются от любых ундулиподий по биохимии и внутреннему устройству. Существует уже несколько десятков гипотез, объясняющих, как появилось клеточное ядро, цитоскелет и другие органеллы, которые не имеют прямых аналогов в мире бактерий. Какая из них ближе к истине?
Главными претендентами на роль гостеприимного хозяина, обеспечившего жилплощадью прокариот – будущих органелл, казались бактерии. Они обладают чертами эукариот, отсутствующими у архей: например, синтезируют определенные жиры и важные белки, из которых строится цитоскелет. Вообще их клетки много крупнее.
Правда, и археи имеют целый ряд особенностей, сближающих их с эукариотами. Гены, задействованные в важнейшем процессе – передаче генетической информации, – практически те же, что и у эукариот. Есть сходство в строении рибосом – производящих белки органелл. Наличествуют белки (актин и тубулин), без которых невозможно построить цитоскелет. Имеется даже набор особых рибосомных белков с сигнальной меткой, которая распознается ядром, пропускающим их на основании этой молекулярной «визы» через свою мембрану. А значит, важная задача перемещения белков в ядро была решена археями еще до появления ядра как такового.
Среди архей, согласно молекулярным данным, по ряду биохимических признаков наиболее подходят на роль клетки-хозяйки обитатели горячих и кислотных источников, а также метанобразующие формы. Именно те, кто мог существовать в условиях повышенных температур и отсутствия кислорода на Земле архейского времени. Вот только мелкие они очень (хотя встречаются и шестимикронные «гиганты»). Выходит, не годятся эти клетки в качестве гостеприимного пристанища для постояльцев с весьма разными потребностями – других микробов, не смогут они здесь прижиться и превратиться в органеллы.
Недавнее открытие новой большой группы архей, получивших общее имя асгардархеи, позволило не то чтобы решить эту проблему, но понять, насколько мало мы знакомы с необычным микромиром. Началось все с находки первых представителей этой группы в черных курильщиках (глубоководных горячих вулканических источниках) в Северной Атлантике. Из-за необычного рельефа, напоминающего развалины крепости, этот гидротермальный очаг назвали Замком Локи в честь одного из богов скандинавского пантеона. Так новые археи стали локиархеями. Родственные им прокариоты, чтобы легче запоминались, стали получать имена других небожителей, которым поклонялись викинги, – благих асов Одина, Тора, Хеймдалля. И где же им вместе быть, как не в Асгарде, божественном граде асов?
Самих асгардархей никто не видел: их присутствие и разнообразие выявляли с помощью метагеномики, анализируя геномный материал непосредственно из проб донных осадков. Этого оказалось достаточно, чтобы выяснить: у асгардархей есть важные гены и белки, ранее считавшиеся присущими исключительно эукариотам. Особенно интересны среди этих генов те, что отвечают за построение цитоскелета, подвижность клетки и ее мембраны, обеспечивая возможность активного захвата инородных тел, т. е. способ питания, почти недоступный прокариотам, но важный для эукариот.
Еще удивительнее оказалась живая локиархея, которую совместными усилиями удалось культивировать микробиологам из нескольких японских научно-исследовательских коллективов. Для этого они поместили донную пробу, взятую на белых курильщиках (метановых просачиваниях) из тихоокеанского глубоководного желоба Нанкай (к югу от Японии), в специально разработанный биореактор, в который на протяжении нескольких лет постоянно подавался метан, поддерживая жизнедеятельность архей и способствуя их размножению.
Да, живая архея оказалась весьма мелкой (около 550 нм), живущей в бескислородной среде и разлагающей остатки аминокислот, чтобы их впитать. Поскольку при усвоении аминокислот вырабатываются водород и соли органических кислот, этот организм должен сосуществовать с микробами, забирающими «отходы производства», – с метанобразующими археями и сульфатвосстанавливающими бактериями. Замыкая круг, они обеспечивают архею аминокислотами.
Вот чего никак не ожидали, так это увидеть длиннющие, извивающиеся и даже ветвящиеся выросты клетки. Необычный внешний вид этого организма позволил сразу придумать новую модель симбиогенеза, названную «опутать-захватить-подчинить». Согласно модели, подобная архея сначала опутала протеобактерию «нанощупальцами», затем подключила ее к своим каналам обмена веществ и в итоге превратила в полностью зависимую органеллу – митохондрию. Выросты и отдельные пузырьки, облаченные в собственные мембраны, тесно срастаясь и сплетаясь, по сути могли создать первичную эндоплазматическую сеть, которая теперь пронизывает цитоплазму каждой эукариотической клетки. Одновременно такая сеть подразделяла клетку на отдельные участки, часть из которых отводилась под строго заданные функции, превращаясь в органеллы, в том числе ядро (самое внутреннее отделение). Нужно было только заменить одни фосфолипиды в мембранах на другие: у бактерий и эукариот эти фосфолипиды – одни и те же, у архей – другие. И недавно в бескислородных глубинах Черного моря открыли бактерии, действительно обладающие мембранами смешанного бактериально-архейного состава.
Откуда взялась протеобактерия? Она всегда была под боком. Ведь асгардархеи разлагают в бескислородной среде аминокислоты и выделяют водород, который необходим проживающим с ним в тесном контакте метанобразующим археям (водород требуется для восстановления двуокиси углерода до метана) и дельта-протеобактериям (для восстановления сульфата до сероводорода). Вот такая протеобактерия и могла оказаться в «сетях» асгардархеи. Оставалось поменять букву – дельту на альфу, т. е. заменить дельта-протеобактерию на ту, которая и стала предком митохондрии. Подобное замещение в микромире отнюдь не редкость: одноклеточные «нерастительные» водоросли способны избавляться от одних пластид и использовать вместо них другие, иначе говоря, новые фотосинтезирующие бактерии вместо старых. При этом еще прихватывается часть чужих генов,