- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
9. Квантовая механика II - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
* Для большей строгости все эти рассуждения нужно было бы провести для малых поворотов e. Раз каждый угол j представляет собой сумму некоторого числа n таких поворотов, j=ne, то R^z (j)=[Rz (e)]n, и общее изменение фазы в n раз превосходит изменение для малого угла 8 и поэтому пропорционально j.
* Точнее, мы определим R^z(j) как поворот физической системы на -j вокруг оси z; это то же самое, что повернуть систему координат на +j.
** Мы всегда вправе выбрать ось z вдоль направления поля при условии, конечно, что его направление не меняется и что больше полей нет.
* В других книгах вы можете встретить формулы с другими знаками; вероятнее всего, в них используются углы, определенные по-иному.
* Кстати, вы можете доказать, что Q^ — это обязательно унитарный оператор, т. е. если он действует на |y>, приводя к |y>, умноженному на некоторое число, то это число должно иметь вид еid, где d — вещественно. Это мелкое замечание, а доказательство основано на следующем наблюдении. Всякая операция наподобие отражения или поворота не приводит к потере каких-либо частиц, так что нормировки |y'> и |y> должны совпадать; отличаться они вправе только на множитель с чисто вещественной фазой в показателе.
Литература: А. Р. Эдмондс, Угловые моменты в квантовой механике, в кн. «Деформация атомных ядер», ИЛ, 1958.
Глава 16
МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ
§ 1. Электрическое дипольное излучение
§ 2. Рассеяние света
§ 3. Аннигиляция позитрония
§ 4. Матрица поворота для произвольного спина
§ 5. Измерения ядерного спина
§ 6. Сложение моментов количества движения
Добавление 1. Вывод матрицы поворота
Добавление 2. Сохранение четности при испускании фотона
§ 1. Электрическое дипольное излучение
В предыдущей главе мы развили представления о сохранении момента количества движения в квантовой механике и показали, как ими можно воспользоваться для предсказания углового распределения протонов при распаде L0-частицы. Теперь мы хотим добавить еще несколько иллюстраций тех следствий, которые вытекают из сохранения момента количества движения в атомных системах. Первым примером послужит излучение света атомом. Сохранение момента количества движения (наряду с другими обстоятельствами) определит поляризацию и угловое распределение испускаемых фотонов.
Пусть имеется атом в возбужденном состоянии с определенным моментом количества движения, скажем со спином, равным 1; он, излучая фотон, переходит к состоянию с моментом нуль при более низкой энергии. Задача в том, чтобы представить угловое распределение и поляризацию фотонов. (Она очень похожа на задачу о распаде L0-частицы, но только теперь спин равен не 1/2, a 1.) Раз у возбужденного состояния спин равен единице, то для z-компоненты момента имеются три возможности. Значение т может быть или +1, или 0, или -1. Возьмем для примера m=+1. (Если мы разберемся в этом примере, то справимся и с другими.) Предположим, что момент количества движения атома направлен по оси +z (фиг. 16.1, а), и спросим, какова амплитуда того, что он излучит вверх по оси гправополяризованный по кругу свет, так что в результате его момент станет равным нулю (фиг. 16.1, б).
Фиг. 16.1. Атом с т = +1 излучает вдоль оси +z правый фотон.
Ответа на этот вопрос мы не знаем. Но зато мы знаем, что правополяризованный по кругу свет уносит вдоль направления своего распространения одну единицу момента количества движения. Значит, после излучения фотона положение станет таким, как показано на фиг. 16.1, б, т. е. атом остался с нулевым моментом относительно оси z, поскольку мы предположили, что низшее состояние атома имеет спин нуль. Обозначим амплитуду такого события буквой а. Точнее, а будет обозначать амплитуду излучения фотона в некоторый узкий телесный угол DW, окружающий ось z, за время dt. Заметьте, что амплитуда излучения левого фотона в том же направлении равна нулю. У такого фотона момент относительно оси z был бы равен -1, а так как у атома он равен нулю, то и в сумме получилось бы -1, так что момент не сохранился бы. Точно так же, если спин атома вначале направлен вниз (-1 вдоль оси z), то он может излучать в направлении оси +z только левые фотоны (фиг. 16.2).
Фиг. 16.2. Атом с m=-1 излучает вдоль оси z левый фотон.
Амплитуду такого события обозначим буквой b (снова имея в виду амплитуду излучения фотона в некоторый узкий телесный угол DW). С другой стороны, если атом находится в состоянии с m=0, он вообще не сможет испустить фотон в направлении +z, потому что у фотона момент количества движения относительно его направления распространения может быть только +1 или -1.
Далее, можно показать, что b и а связаны. Проделаем над ; системой, изображенной на фиг. 16.1, преобразование инверсии. Это значит, что мы должны представить себе, как будет выглядеть система, если мы каждую ее часть передвинем в соответствующую точку с другой стороны от начала координат. Но это не значит, что следует отражать и векторы момента количества движения, ведь они — искусственные образования. Нужно другое — нужно обратить истинный характер движения, соответствующего такому моменту количества движения.
На фиг. 16.3, а мы показали, как выглядит процесс, изображенный на фиг. 16.1, до и после инверсии относительно центра атома.
Фиг, 16.3. Если процесс (а) преобразовать путем инверсии относительно центра атома, он станет выглядеть, как (б).
Заметьте, что направление вращения атома не изменилось. В обращенной системе (фиг. 16.3, б) получается атом с m=+1, излучающий вниз левый фотон.
Если мы теперь повернем систему, изображенную на фиг. 16.3, б, на 180° вокруг оси х и у, она совпадет с фиг. 16.2. Сочетание инверсии и поворота превращает второй процесс в первый. Пользуясь табл. 15.2 (стр. 129), мы видим, что поворот на 180° вокруг оси у как раз переводит состояние с m=-1 в состояние с m=+1, так что амплитуда b должна быть равна амплитуде а, если не считать возможной перемены знака при инверсии. А перемена знака при инверсии зависит от четностей начального и конечного состояний атома.
В атомных процессах четность сохраняется, так что четность всей системы до и после излучения фотона должна быть одной и той же. Что на самом деле произойдет, зависит от того, положительны или отрицательны четности начального и конечного состояний атома — в разных случаях угловое распределение излучения будет различным. Возьмем обычный случай отрицательной четности начального состояния атома и положительной четности конечного; он даст так называемое «электрическое дипольное излучение». (Если начальное и конечное состояния обладают одинаковой четностью, то говорят, что происходит «магнитное дипольное излучение», напоминающее по характеру излучение витка с переменным током.) Если четность начального состояния отрицательна, его амплитуда при инверсии, переводящей систему из а в б на фиг. 16.3, меняет знак. Конечное состояние атома имеет положительную четность, так что его амплитуда при инверсии знака не меняет. Если в реакции сохраняется четность, то амплитуда b должна быть равна а во величине, но противоположна по знаку.
Мы приходим к заключению, что если амплитуда того, что состояние m=+1 излучит фотон вперед, равна а, то для рассматриваемых четностей начального и конечного состояний амплитуда того, что состояние m=-1 излучит вперед левый фотон, равна -а.
Теперь у нас есть все, чтобы найти амплитуду того, что фотон будет испущен под углом 0 к оси z. Пусть вначале атом поляризован так, что m=+1. Это состояние мы можем разложить на состояния с т = +1, 0, -1 относительно новой оси z', проведенной в направлении испускания фотона. Амплитуды этих трех состояний — как раз те, которые были приведены в нижней половине табл. 15.2 (стр. 129). Амплитуда того, что правый фотон испускается в направлении 0, равна тогда произведению а на амплитуду того, что в этом направлении будет m=+1, а именно