- Любовные романы
- Фантастика и фэнтези
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Власть роботов. Как подготовиться к неизбежному - Мартин Форд
Шрифт:
Интервал:
Закладка:
Хотя мощные нейронные сети DeepMind и воссоздают образ экрана Breakout, он остается жестко привязанным к простым пикселям даже на более высоких уровнях абстракции в сети. Очевидно, что у системы не возникает понимания ракетки как реального объекта, который можно перемещать. Иными словами, это не имеет ничего общего с человеческим пониманием материальных объектов, представленных пикселями на экране, или физических законов, управляющих их движением. На всех уровнях сети это просто пиксели. Хотя некоторые исследователи ИИ продолжают верить, что более целостное понимание в конце концов возникло бы, если бы сеть имела больше слоев искусственных нейронов, поддерживалась более быстрым компьютером и поглотила еще больше данных, я считаю это крайне маловероятным. Чтобы появились машины, обладающие более человеческим восприятием мира, требуются фундаментальные инновации.
Этот тип проблем, обусловленный негибкостью ИИ-системы и ее неспособностью адаптироваться даже к мелким неожиданным изменениям входных данных, исследователи называют хрупкостью. Хрупкое ИИ-приложение, пожалуй, не такая уж серьезная проблема, если из-за нее складской робот время от времени упаковывает в коробку не тот товар. Однако в других случаях этот технический недостаток может обернуться катастрофой. Именно поэтому, например, реальные достижения в сфере беспилотных автомобилей так далеки от первых восторженных прогнозов.
Все эти ограничения оказались в центре внимания к концу десятилетия, породив серьезные опасения, что данная область исследования снова отрывается от реальности, а хайп задирает ожидания слишком высоко. В отраслевых изданиях и социальных сетях вновь замелькало одно из самых пугающих для разработчиков искусственного интеллекта словосочетаний — «зима искусственного интеллекта». В интервью BBC в январе 2020 года Йошуа Бенджио сказал, что «возможности ИИ были несколько преувеличены… некоторыми компаниями, которым это было выгодно»[153].
В значительной мере эта обеспокоенность связана с тем направлением деятельности, где хайп достиг абсолютного максимума (см. главу 3), — беспилотными автомобилями. Стало ясно, что, вопреки оптимистическим прогнозам начала десятилетия, до настоящих беспилотных транспортных средств, способных функционировать в разнообразных условиях, еще далеко. Такие компании, как Waymo, Uber и Tesla, вывели беспилотные машины на дороги общего назначения, но за исключением нескольких экспериментов с очень серьезными ограничениями в салоне всегда находился водитель, которому, как оказалось, слишком часто приходилось брать управление на себя. Даже при наличии водителя, обязанного контролировать работу автомобиля, происходили аварии со смертельным исходом, бьющие по репутации этого направления. В 2018 году пользователи активно делились постом из блога исследователя в области машинного обучения Филипа Пикневски «Зима ИИ давно наступила». В нем отмечалось, что по данным, запрошенным штатом Калифорния, одна проходящая испытания машина «не могла проехать буквально десятка километров» без отказа системы, вынуждавшего человека принимать на себя управление автомобилем[154].
На мой взгляд, если действительно близится очередная зима ИИ, она, скорее всего, будет мягкой. Хотя обеспокоенность замедлением прогресса возникла не на пустом месте, бесспорно и то, что в последние годы ИИ был глубоко интегрирован в инфраструктуру и бизнес-модели крупнейших технологических компаний. Эти компании получили существенную отдачу от огромных вложений в вычислительные ресурсы и профессионалов в области ИИ и теперь считают искусственный интеллект обязательным условием своей конкурентоспособности на рынке. Аналогично почти каждый технологический стартап сегодня в той или иной степени вкладывает деньги в ИИ, и компании из других отраслей, как крупные, так и мелкие, начинают пользоваться этой технологией. Успешная интеграция в коммерческую сферу имеет несоизмеримо большее значение, чем любые предсказания зимы ИИ. Вследствие этого данная область пользуется поддержкой огромной армии сторонников из корпоративного мира и имеет импульс развития, который компенсирует замедление.
Кроме того, в определенном смысле крах масштабируемости как главной движущей силы прогресса может иметь и светлую сторону. Когда все вокруг уверены, что можно добиться важных достижений, просто направляя на решение задачи больше вычислительных ресурсов, интерес к вложениям в намного более сложную работу над подлинной инновацией снижается. Пожалуй, именно это произошло с законом Мура. Пока все были абсолютно уверены, что быстродействие компьютеров будет удваиваться каждые два года, производители чипов сосредоточивались на создании все более быстрых вариантов микропроцессоров прежних типов от таких компаний, как Intel и Motorola. В последние годы перспективы увеличения быстродействия компьютеров стали более туманными, размеры цепей в чипах приблизились к размеру атомов, а действие закона Мура в его традиционном понимании подошло к концу. Это заставило инженеров мыслить нешаблонно, что повлекло за собой такие инновации, как программное обеспечение для массово-параллельных вычислений и совершенно новые архитектуры процессоров, многие из которых оптимизированы для глубоких нейросетей. Думаю, мы можем ожидать подобного взрывного возникновения идей в области глубокого обучения и искусственного интеллекта в целом, поскольку простое наращивание масштаба нейронных сетей уже не гарантирует прогресса.
Погоня за универсальным машинным интеллектом
Чтобы преодолеть существующие ограничения систем глубокого обучения, необходимы инновации, которые подведут машинный интеллект несопоставимо ближе к возможностям человеческого мозга. На этом пути стоит много серьезных препятствий, зато в финале нас ждет неизменный «святой Грааль» искусственного интеллекта — машина, способная общаться, мыслить и усваивать новые идеи на уровне человека или выше его. Исследователи часто используют термин «универсальный искусственный интеллект». В реальном мире пока нет ничего близкого к универсальному ИИ, а вот в научной фантастике примеров множество, в том числе HAL из «Космической одиссеи 2001 года», главный компьютер космического корабля Enterprise, и Дейта из «Звездного пути», а также, разумеется, подлинно антиутопические технологии из фильмов «Терминатор» и «Матрица». Можно с уверенностью утверждать, что создание универсального машинного интеллекта со сверхчеловеческими возможностями станет самой важной по своим