- Любовные романы
- Фантастика и фэнтези
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Власть роботов. Как подготовиться к неизбежному - Мартин Форд
Шрифт:
Интервал:
Закладка:
Что касается обозримого будущего, то большинство исследователей интересует не столько реальное создание ИИ человеческого уровня, сколько путь к этой цели и многочисленные инновации, которые потребуются для успешного преодоления препятствий на этом пути. Разработка в полной мере мыслящей машины — это не умозрительный научный проект, а своего рода дорожная карта по созданию ИИ-систем, которые преодолеют сегодняшние ограничения и приобретут новые возможности. Движение по этому пути почти гарантированно породит множество практических приложений колоссальной коммерческой и научной ценности.
Именно сочетанием поиска практических инноваций в краткосрочной перспективе с намного более амбициозным стремлением создать машинный интеллект подлинно человеческого уровня характеризуется философия исследования разнообразных команд, работающих над ИИ в Google. Джефф Дин, директор компании по искусственному интеллекту, сказал мне, что если DeepMind, независимая компания, приобретенная Google в 2014 году, занимается поиском путей создания универсального машинного интеллекта по «структурированному плану», то другие исследовательские группы в Google придерживаются «более органического» подхода и заняты задачами, «важность которых мы осознаем, но пока не умеем их решать; когда же мы с ними справимся, то поймем, чем заняться дальше». Все группы по исследованию ИИ в Google, по его словам, «работают совместно, пытаясь создать по-настоящему гибкие ИИ-системы»[155]. Лишь время покажет, какой подход эффективнее: четкое планирование сверху вниз или пошаговое исследование неизведанного, но на обоих направлениях вероятно появление новых идей, которые можно будет использовать на практике.
У каждой команды, возглавляющей движение по этим путям, своя философия исследований и преодоления трудностей. Общим для всех них является то, что конечные цели «срисованы» со способностей, характерных для человеческого мышления.
Один из подходов состоит в использовании в качестве образца внутренней организации и работы человеческого головного мозга. Его сторонники считают, что искусственный интеллект должен напрямую обращаться к опыту нейробиологии. Лидером в этой области является DeepMind. Основатель и генеральный директор этой компании Демис Хассабис — что необычно для исследователя ИИ — получил высшее образование в области нейробиологии, а не вычислительной техники и защитил докторскую диссертацию в лондонском Юниверсити-колледже. Хассабис сказал мне, что самая большая группа исследователей в DeepMind состоит из специалистов по нейробиологии, занятых поиском способов применения новейших открытий науки о мозге в создании искусственного интеллекта[156].
Их задача не детальное копирование работы мозга, а использование базовых принципов его функционирования как отправной точки. Для объяснения этого подхода эксперты в области ИИ часто приводят аналогию с изучением механики полета и последующей разработкой конструкций современных самолетов. Хотя очевидно, что источником вдохновения для создания самолетов послужили птицы, самолеты не машут крыльями и не повторяют напрямую полет птицы. Когда инженеры разобрались в аэродинамике их полета, стало возможно строить машины на основе тех же базовых принципов, но намного более совершенные. Хассабис и команда из DeepMind верят в существование своего рода «аэродинамики интеллекта» — основополагающей теории, описывающей человеческий и, в перспективе, машинный интеллект.
Междисциплинарная команда DeepMind привела несколько убедительных свидетельств того, что подобный общий комплекс принципов действительно может существовать, опубликовав в мае 2018 года результаты своего исследования. Четырьмя годами раньше Нобелевская премия в области физиологии или медицины была вручена трем нейробиологам — Джону О’Кифу, Мэй-Бритт Мозер и Эдварду Мозеру — за открытие особого типа нейрона, обусловливающего ориентацию в пространстве у животных. Эти нервные клетки, названные нейронами решетки, возбуждаются, образуя регулярную гексагональную структуру, в процессе исследования животным пространства. Считается, что нейроны решетки составляют нечто вроде «внутреннего GPS», нейронного представления системы картирования, что позволяет животным ориентироваться в пространстве, прокладывая маршрут в сложном и непредсказуемом окружении.
DeepMind поставила вычислительный эксперимент: исследователи обучили мощную нейронную сеть на данных, моделировавших информацию о движении, которой пользуется животное, разыскивающее еду в темноте. Исследователи с удивлением обнаружили, что структуры, напоминающие нейроны решетки, «спонтанно возникли внутри сети — что поразительно напоминает паттерны активности нейронов, наблюдающиеся у разыскивающих еду млекопитающих»[157]. Иными словами, оказалось, что одна и та же базовая навигационная структура сама собой возникает в двух совершенно разных субстратах, биологическом и цифровом. Хассабис сказал мне, что считает это одним из самых поразительных прорывов, совершенных компанией. Похоже, что внутренняя система, использующая нейроны решетки, попросту представляет собой самый эффективный с точки зрения вычислений способ отображения навигационной информации в любой структуре, независимо от того, как именно она реализована[158]. Научная статья DeepMind, описывающая это исследование и опубликованная в журнале Nature[159], вызвала широкий отклик в сфере нейробиологии. Подобные открытия заставляют предположить, что междисциплинарный подход, которого придерживается эта компания, скорее всего, окажется улицей с двусторонним движением — исследователи ИИ будут не только учиться у мозга, но и способствовать его пониманию.
DeepMind внесла еще один важный вклад в нейробиологию в начале 2020 года, использовав свой опыт в области глубокого обучения для исследования работы дофаминовых нейронов в мозге[160]. Нейробиологи с 1990-х годов стали понимать, что эти особые нейроны предсказывают вероятное вознаграждение за выполнение животным определенного действия. Если реальная награда оказывается больше ожидаемой, то выделяется относительно больше дофамина. Если же результат отстает от ожиданий, это химическое вещество, дающее нам чувство благополучия, вырабатывается в меньшем количестве. Традиционное обучение с подкреплением у компьютерных систем устроено во многом так же — алгоритм делает прогноз и затем регулирует вознаграждение, исходя из разницы между ожидаемыми и действительными результатами. Исследователям из DeepMind удалось значительно усовершенствовать алгоритм обучения с подкреплением, сгенерировав распределение прогнозов вместо одного усредненного предсказания и затем корректируя вознаграждение в соответствии с ними. Затем компания совместно с группой исследователей из Гарварда проверила, происходит ли подобный процесс в головном мозге. Им удалось доказать, что мозг мышей действительно создает аналогичное распределение прогнозов: одни дофаминовые нейроны оценивают потенциальную награду более пессимистично, другие — более оптимистично. Иными словами, компания снова продемонстрировала наличие одного и того же базового механизма, обеспечивающего аналогичные результаты, в цифровом алгоритме и в биологическом мозге.
Исследования такого рода свидетельствуют о глубокой вере Хассабиса и его команды в обучение с подкреплением и об отношении к этому методу как к важнейшему элементу попыток приблизиться к более универсальному искусственному интеллекту. В этом плане они стоят особняком. Например, Ян Лекун из Facebook заявил, что отводит обучению с подкреплением второстепенную