- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Эврика! Радость открытия. Архимед - Эугенио Агиляр
Шрифт:
Интервал:
Закладка:
Теперь доказано, что количество песка в (объеме), равном по величине тому, что большинство астрономов называют миром, меньше чем 1000 единиц седьмых чисел. [...]
[...] Ясно, что количество песчинок в (объеме), равном по величине сфере неподвижных звезд, как ее мыслит Аристарх, будет меньше, чем тысяча мириад (единиц) восьмых чисел.
О КВАДРАТУРЕ ПАРАБОЛЫАрхимед Досифею
Узнав о смерти Конона, делавшего все для нас из дружбы, и о том, что ты был близок к Конону и сведущ в геометрии, мы очень опечалились о покойном и как о друге, и как о выдающемся математике. Поэтому мы решили написать тебе, подобно тому как обычно писали Конону, и послать некоторые геометрические теоремы, остававшиеся ранее неизвестными, а теперь полученные нами; они были сначала обнаружены нами при помощи механических методов, а затем доказаны также и геометрически.
Утверждение 21
Если в сегмент, заключенный между прямой и параболой, вписать треугольник, имеющий с сегментом то же самое основание и ту же высоту, а в оставшиеся сегменты вписать другие треугольники, имеющие те же самые основания и высоты, что и у этих сегментов, то треугольник, вписанный в весь сегмент, будет в восемь раз больше каждого из треугольников, вписанных в сегменты, оставшиеся [по краям].
Утверждение 23
Если взять несколько величин, образующих непрерывную пропорцию в отношении четырех к одному, то все эти величины вместе, сложенные с третьей частью наименьшей, составят четыре трети наибольшей.
Утверждение 24
Всякий сегмент, заключенный между прямой и параболой, составляет четыре трети треугольника, имеющего с ним одно и то же основание и равную высоту.
О ПЛАВАЮЩИХ ТЕЛАХКнига I
Предположим, что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из ее частиц сдавливается жидкостью, находящейся над ней по отвесу, если только жидкость не заключена в каком-нибудь сосуде и не сдавливается еще чем-нибудь другим.
Утверждение 2
Поверхность всякой жидкости, установившейся неподвижно, будет иметь форму шара, центр которого совпадает с центром Земли.
Утверждение 3
Тела, равнотяжелые с жидкостью, будучи опущены в эту жидкость, погружаются так, что никакая их часть не выступает над поверхностью жидкости, и не будут двигаться вниз.
Утверждение 4
Тело более легкое, чем жидкость, будучи опущено в эту жидкость, не погружается целиком, но некоторая часть его остается над поверхностью жидкости.
Утверждение 5
Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, погружается настолько, чтобы объем жидкости, соответствующей погруженной (части тела), имел вес, равный весу всего тела.
Утверждение 6
Тела более легкие, чем жидкость, опущенные в эту жидкость насильственно, будут выталкиваться вверх с силой, равной тому весу, на который жидкость, имеющая равный объем с телом, будет тяжелее этого тела.
Утверждение 7
Тела, более тяжелые, чем жидкость, опущенные в эту жидкость, будут погружаться, пока не дойдут до самого низа и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела.
Книга II
Утверждение 1
Если какое-нибудь тело, более легкое, чем жидкость, опустить в эту жидкость, то оно по тяжести будет находиться в том же отношении с жидкостью, какое погруженный объем имеет ко всему объему.
СТОМАХИОНПоскольку так называемый стомахион может служить предметом разнообразных теорий относительно перестановок составляющих его фигур, то я счел необходимым сначала рассказать о его величине, об отдельных его частях, на которые он разделяется, о том, чему каждая из них может быть уподоблена...
МЕТОД МЕХАНИЧЕСКИХ ТЕОРЕМАрхимед приветствует Эратосфена.
[...] Зная, что ты являешься, как я всегда говорю, ученым человеком и по праву занимаешь выдающееся место в философии, а также при случае можешь оценить и математическую теорию, я счел нужным написать тебе и в этой же самой книге изложить некоторый особый метод, благодаря которому ты получишь возможность при помощи механики находить некоторые математические теоремы. Я уверен, что этот метод будет тебе ничуть не менее полезен и для доказательства самих теорем. Действительно, кое-что из того, что ранее было мною усмотрено при помощи механики, позднее было также доказано и геометрически, так как рассмотрение при помощи этого метода еще не является доказательством; однако получить при помощи этого метода некоторое предварительное представление об исследуемом, а затем найти и само доказательство гораздо удобнее, чем производить изыскания, ничего не зная.
[...] Поэтому я и решил написать об этом методе и обнародовать его, с одной стороны, для того чтобы не оставались пустым звуком прежние мои упоминания о нем, а с другой — поскольку я убежден, что он может принести математике немалую пользу; я предполагаю, что некоторые современные нам или будущие математики смогут при помощи указанного метода найти и другие теоремы, которые нам еще не приходили в голову.
КНИГА ЛЕММУтверждение 4
Пусть АВС будет полукруг; построим на диаметре АС два полукруга AD и DC и восставим перпендикуляр DB получающаяся фигура, которую Архимед называет «арбелос» (это будет площадь, ограниченная дугой большого полукруга и двумя окружностями малых кругов), будет равна кругу, диаметром которого является перпендикуляр DB.
Утверждение 5
Если дан полукруг АВ, на его диаметре где-нибудь взята точка С, на диаметре построены два полукруга Л С и СВ, из С восставлен перпендикуляр CD к АВ и с обеих сторон (от него) построены два круга, касающиеся как этого перпендикуляра, так и обоих полукругов, то эти два круга будут равны.
Утверждение 7
Если около квадрата один круг описан, а другой вписан в него, то описанный круг будет вдвое больше вписанного.
Утверждение 14
Если будет полукруг АВ, от его диаметра АВ отсечены равные прямые Л С, BD и на линиях Л С, CD, DB построены полукруги, причем центром двух полукругов на АВ и CD будет точка Е, то по проведении к АВ перпендикуляра EF, продолженного до точки Gy круг на диаметре FG будет равен площади фигуры, заключающейся между большим полукругом, находящимися внутри его двумя полукругами и средним полукругом, который будет вне большого полукруга. И это есть фигура, которую Архимед называет «салинон».
ЗАДАЧА О БЫКАХСколько у Солнца быков, найди для меня, чужестранец. (Ты их, подумав, считай, мудрости если не чужд.)
Как на полях Тринакрийской Сицилии острова тучных Их в четырех стадах много когда-то паслось.
Цветом стада различались: блистало одно млечно-белым, Темной морской волны стада другого был цвет,
Рыжим третие было, последнее пестрым...
Сколько у Солнца быков, чужестранец, коль точно ты скажешь.
Нам раздельно назвав тучных быков число,
Так же раздельно коров, сколько каждого цвета их было, Не назовет тут никто в числах невеждой тебя...
Список рекомендуемой литературы
Arqui'medes-Eutocio, Tratados I. Comentarios, Madrid, Gredos, 2005.
—: Tratados II. Comentarios, Madrid, Gredos, 2005.
Bell, E.T., Losgrandes matematicos, Buenos Aires, Losada, 2010.
Boyer C., Historia de la matemdtica, Madrid, Alianza Editorial, 2007.
Gamow, G., Biografia de la ftsica, Madrid, Alianza Editorial, 2007.
Lozano, M., De Arquimedes a Einstein, Barcelona, Debolsillo, 2007.
Plutarco, Vidas paralelas, «Vida de Marcelo» (en Biografos griegos), Aguilar, Madrid, 1970.
Stewart, I., Historia de las matematicos, Madrid, Critica, 2008. Strathern, P., Arquimedes у la palanca, Madrid, Siglo XXI, 1999. Torija, R., Arquimedes. Alrededor del circulo, Madrid, Nivola, 1999.
Vega, L., Arquimedes: El metodo, Madrid, Alianza Editorial, 1986.
Указатель
айсберг 52,53,125
Александрийская библиотека 18, 19
Александрия 117,122,124,132,138
антикитерский механизм 139
«Аполлон-15» 140
арбелос (геометрическая фигура) 113-115
Аристотель 35,38, 39, 58
Архит Тарентский 59 Асуан 18,19
блок 121,133,134
Венаторий, Томас 32
весы 49, 50,58-60,62,64,66,123
Вильгельм из Мербеке 30, 31
винт Архимеда 11, 122, 123, 124, 137
Витрувий, Марк Полл ион 29, 41, 43,44,49, 65,126,136
водяные часы 48, 50
Галилей, Галилео 11,39,51,65-67, 129
Ганнибал 13, 21, 25
Гейберг, Йохан Людвиг 20, 30, 32, 33, 76,141
Гелон 13, 20, 67-69,146
Геракл ид Тарентский 22
Геракл ид 17,144
Герон Александрийский 30, 31, 76, 122
гидростатика 30,42-43,51,55,65-67.123.136
Гиерон II (тиран Сиракуз) 9, 10, 13, 20,21,24, 26, 28, 37, 40,41, 45.65.67.124.136
горы Архимед (на Луне) 139
гугол 72
«делосская задача» 94 динамика 52
Диодор Сицилийский 17

