Большая Советская Энциклопедия (МЕ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
В конце 19 — начале 20 вв. получила физико-химическую основу металлургия — наука о производстве М. из природного сырья. Тогда же началось исследование свойств М. и их сплавов в зависимости от состава и строения (см. Металловедение , Металлофизика ).
Химические свойства. В соответствии с местом, занимаемым в периодической системе элементов (табл. 1), различают М. главных и побочных подгрупп. М. главных подгрупп (подгруппы а) называют также непереходными. Эти М. характеризуются тем, что в их атомах происходит последовательное заполнение s- и р-электронных оболочек. В атомах М. побочных подгрупп (подгруппы б), называют переходными, происходит достраивание d- и f-оболочек, в соответствии с чем их делят на d-группу и две f-группы — лантаноиды и актиноиды . В подгруппы а входят 22 М.: Li, Na, К, Rb, Cs, Fr (I a); Be, Mg, Ca, Sr, Ba, Ra (II a); Al, Ga, In, Tl (III a); Ge, Sn, Pb (IV a); Sb, Bi (V a); Po (VI а). В подгруппы б входят: 1) 33 переходных металла d-группы [Cu, Ag, Au (I б), Zn, Cd, Hg (II б); Sc, Y, La, Ac (III б); Ti, Zr, Hf, Ku (IV б); V, Nb, Ta, элемент с Z = 105 (V б), Cr, Mo, W (VI б), Mn, Te, Re (VII б), Fe, Co, Ni, Ru, Rh, Pd, 0s, lr, Pt (VIII б)]; 2) 28 М. f-группы (14лантаноидов и 14 актиноидов).
Электронная структура атомов некоторых d-элементов имеет ту особенность, что один из электронов внешнего уровня переходит на d-подуровень. Это происходит при достройке этого подуровня до 5 или 10 электронов. Поэтому электронная структура валентных подуровней атомов d-элементов, находящихся в одной подгруппе, не всегда одинакова. Например, Cr и Mo (подгруппа VI б) имеют внешнюю электронную структуру соответственно 3d5 4s1 и 4d5 5s1 , тогда как у W она 5d4 6s2 . В атоме Pd (подгруппа VIII б) два внешних электрона «перешли» на соседний валентный подуровень, и для атома Pd наблюдается d10 вместо ожидаемого d8 s2 .
М. присущи многие общие химические свойства, обусловленные слабой связью валентных электронов с ядром атома: образование положительно заряженных ионов (катионов), проявление положительной валентности (окислительного числа), образование основных окислов и гидроокисей, замещение водорода в кислотах и т.д. Металлические свойства элементов можно сравнить, сопоставляя их электроотрицательность [способность атомов в молекулах (в ковалентной связи) притягивать электроны, выражена в условных единицах]; элементу присущи свойства М. тем больше, чем ниже его электроотрицательность (чем сильнее выражен электроположительный характер).
В периодической системе элементов Менделеева (табл. 1) в пределах каждого периода, начиная со 2-го, с увеличением атомного номера электроотрицательность возрастает от 2 до 7, начиная со щелочного металла и кончая галогеном (переход от М. к неметаллам). В пределах подгрупп (а и б) с увеличением атомного номера электроотрицательность в общем уменьшается, хотя и не всегда последовательно. В семействах лантаноидов и актиноидов она сохраняется примерно на одном уровне.
Если расположить М. в последовательности увеличения их нормальных потенциалов , получим т. н. ряд напряжений или ряд активностей (табл. 2 и 3). Рассмотрение этого ряда показывает, что по мере приближения к его концу — от щелочных и щёлочноземельных М. к Pt и Au — электроположительный характер членов ряда уменьшается. М. от Li по Na вытесняют H2 из H2 O на холоду, а от Mg по Tl — при нагревании. Все М., стоящие в ряду выше H2 , вытесняют его из разбавленных кислот (на холоду или при нагревании). М., стоящие ниже H2 , растворяются только в кислородных кислотах (таких, как концентрированная H2 SO4 при нагревании или HNO3 ), а Pt, Au — только в царской водке (Ir нерастворим и в ней).
М. от Li по Na легко реагируют с O2 на холоду; последующие члены ряда соединяются с O2 только при нагревании, а lr, Pt, Au в прямое взаимодействие с O2 не вступают.
Окислы М. от Li по Al (табл. 2) и от La по Zn (табл. 3) трудно восстановимы; по мере продвижения к концу ряда восстановимость окислов увеличивается, а окислы последних его членов разлагаются на М. и O2 уже при слабом нагревании. О прочности соединений М. с кислородом (и др. неметаллами) можно судить и по разности их электроотрицательностей (табл. 1): чем она больше, тем прочнее соединение.
Табл. 2. — Нормальные электродные потенциалы непереходных металлов
Система Нормальный потенциал при 25 °С, в Система Нормальный потенциал при 25 °C, в Система Нормальный потенциал при 25 °С, в Li Û Li+ + е -3,0245 Mg Û Mg2+ + 2е -2,375 Sn Û Sn2+ + 2e -0,140 Cs Û Cs+ + e -3,020 Be Û Be2+ + 2e -1,69 Pb Û Pb2+ + 2e -0,126 Rb Û Rb+ + e -2,990 Al Û Al3+ + 3e -1,67 Ha Û 2H+ + 2e 0 К Û K+ + e -2,925 Ga Û Ga3+ + 3e -0,52 Sb Û Sb3+ + 3e +0,20 Ra Û Ra2+ + 2е -2,92 Ga Û Ga2+ + 2e -0,45 Bi Û Bi3+ + 3e +0,23 Ba Û Ba2+ + 2e -2,90 In Û ln3+ + 3e -0,34 Po Û Po3+ + 3e +0,56 Sr Û Sr2+ + 2e -2,89 Tl Û Tl+ + е -0,338 Po Û Po2+ + 2е +0,65 Ca Û Ca2+ + 2e -2,87 In Û ln2+ + 2e -0,25 Tl Û Tl3+ + 3e +0,71 Na Û Na+ + е -2,714 Pb Û Pb4+ + 4е +0,80Табл. 3. — Нормальные электродные потенциалы переходных металлов
Система Потенциал при 25 °С, в Система Потенциал при 25 °C, в Система Потенциал при 25 °C, e Ac Û Ac3+ + 3e -2,60 Cr Û Cr3+ + 3е -0,74 Ru Û Ru2+ + 2e +0,45 La Û La3+ + 3e -2,52 Fe Û Fe2+ + 2e -0,44 Mn Û Mn3+ + 3e +0,47 Y Û Y3+ + 3e -2,37 Cd Û Cd2+ + 2e -0,402 Cu Û Cu+ + e +0,522 Sc Û Sc3+ + 3e -2,08 Re Û Re3+ + 3e -0,3 Rh Û Rh2+ + 2e +0,60 Hf Û Hf4+ + 4е -1,70 Co Û Co2+ + 2e -0,277 W Û W6+ + 6e +0,68 Ti Û Ti3+ + 3е -1,63 Ni Û Ni2+ + 2е -0,25 Rh Û Rh3+ + 3e +0,70 Zr Û Zr4+ + 4е -1,56 Те Û Te2+ + 2e -0,24 0s Û Os2+ + 2e +0,70 V Û V2+ + 2e -1,18 Mo Û Mo3+ + 3е -0,20 Ag Û Ag+ ++с +0,779 Mn Û Mn2+ + 2e -1,18 H2 Û 2H+ + 2e 0,000 Pd Û Pd2+ + 2e +0,83 Nb Û Nb3+ + 3e -1,10 Fe Û Fe3+ + 3e +0,036 Hg Û Hg2+ + 2e +0,854 V Û V3+ +3e -0,87 W Û W3+ + 3e +0,11 lr Û lr3+ + 3e +1,0 Cr Û Cr2+ + 2e -0,86 Cu Û Cu2+ + 2e +0,346 Pt Û Pt2+ + 2e +1,2 Zn Û Zi3+ + 2e -0,761 Co Û Co3+ + 3e +0,40 Au Û Au3+ + 3e +1,5 Au Û Au+ + e +1,7Валентности (точнее, окислительные числа) непереходных М. равны: +1 для подгруппы I а; +2 для II a; +1 и +3 для III a; +2 и +4 для IV a; +2, +3 и +5 для V a; — 2, +2, +4, +6 для VI a. У переходных М. наблюдается ещё большее разнообразие окислительных чисел: +1, +2, +3 для подгруппы I б, +2 для II б; +3 для III б; +2, +3, +4 для IV б; +2, +3, +4, +5 для V б; +2, +3, +4, +5, +6 для VI б, +2, +3, +4, +5, +6, +7 для VII б, от +2 до +8 в VIII б. В семействе лантаноидов наблюдаются окислительные числа +2, +3 и +4, в семействе актиноидов — от +3 до +6. Низшие окислы М. обладают основными свойствами, высшие являются ангидридами кислот (см. Кислоты и основания ). М., имеющие переменную валентность (например, Cr, Mn, Fe), в соединениях, отвечающих низшим степеням окисления [Cr (+2), Mn (+2), Fe (+2)], проявляют восстановительные свойства; в высших степенях окисления те же М. [Cr (+6), Mn (+7), Fe (+3)] обнаруживают окислительные свойства. О химических соединениях М. друг с другом см. в ст. Металлиды , о соединениях М. с неметаллами см. в статьях Бориды , Гидриды , Карбиды , Нитриды , Окислы и др.
Лит.: Некрасов Б. В., Основы общей химии, 2 изд., т. 1—3, М., 1969—70; Дей М. К., Селбин Дж., Теоретическая неорганическая химия, пер. с англ., 2 изд., М., 1971; Барнард А., Теоретические основы неорганической химии, пер. с англ., М., 1968; Рипан Р., Четяну И., Неорганическая химия, т. 1—2, Химия металлов, пер. с рум., М., 1971—72. См. также лит. при ст. Неорганическая химия .
С. А. Погодин.