Категории
Самые читаемые
Лучшие книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (МЕ) - БСЭ БСЭ

Большая Советская Энциклопедия (МЕ) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (МЕ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 226 227 228 229 230 231 232 233 234 ... 303
Перейти на страницу:

  Достижимые степени деформации М. ограничены процессом разрушения. По мере роста плотности дислокаций при холодной деформации растёт неравномерность их распределения, приводящая к концентрации напряжений в местах сгущения дислокаций и зарождению здесь очагов разрушения — трещин. В реальных кристаллах такие концентрации напряжений имеются и в исходном недеформированном состоянии (скопление примесей, частицы др. фаз и т.п.). Но вследствие пластичности М. деформация вблизи опасных мест снимает напряжения и предотвращает разрушение. Однако, если сопротивление движению дислокаций растет, то релаксационная способность материала падает, что под нагрузкой приводит к развитию трещин (хрупкое разрушение). Это особенно проявляется в М. с объёмноцентрированной решёткой, в которых подвижность дислокаций резко уменьшается при понижении температуры (из-за взаимодействия с примесями и уменьшения числа кристаллографич. возможных плоскостей скольжения). Предотвращение хладноломкости — одна из важнейших технических проблем разработки конструкционных металлических материалов. Др. актуальная проблема — увеличение прочности и сопротивления деформации при высоких температурах. Зародышами разрушения в этих условиях служат микропоры, образующиеся в результате скопления вакансий. Эффективный способ повышения высокотемпературной прочности — уменьшение диффузионной подвижности точечных дефектов, в частности  легированием .

  Применяемые в технике конструкционные металлические материалы являются поликристаллическими. Их механические свойства практически изотропны и могут существенно отличаться от свойств монокристаллов М. Межфазные границы вносят дополнительный вклад в упрочнение. С др. стороны, они могут быть местами предпочтительного разрушения (межзёренное разрушение) или деформации. Изменяя число и строение межфазных границ, форму и пространственное расположение отдельных структурных составляющих многофазных систем (поликристаллов, гетерофазных агрегатов, возникающих вследствие фазовых превращений, или искусственно полученных композиций), а также регулируя состав и дефектную структуру отдельных кристаллов, можно получить огромное разнообразие механических свойств, необходимых для практического использования металлических материалов.

  А. Л. Ройтбурд.

  Лит.: Френкель Я. И., Введение в теорию металлов, 2 изд., М. — Л., 1950; Бете Г., Зоммерфельд А., Электронная теория металлов, пер. с нем., М. — Л., 1938; Лифшиц И. М., Азбель М. Я., Каганов М. И., Электронная теория металлов, М., 1971; Абрикосов А. А., Введение в теорию нормальных металлов, М., 1972; Слэтер Дж., Диэлектрики, полупроводники, металлы, пер. с англ., М., 1969; Шульце Г., Металлофизика, пер. с нем., М., 1971.

  Металлы в технике. Благодаря таким свойствам, как прочность, твёрдость, пластичность, коррозионная стойкость, жаропрочность, высокая электрическая проводимость и многое др., М. играют громадную роль в современной технике, причём число М., находящих применение, постоянно растет. Характерно, что до начала 20 в. многие важнейшие М. — Al, V, W, Mo, Ti, U, Zr и др. — либо не производились вообще, либо выпускались в очень ограниченных масштабах; такие М., как Be, Nb, Ta, начали сравнительно широко использоваться лишь накануне 2-й мировой войны 1939—45. В 70-х гг. 20 в. в промышленности применяются практически все М., встречающиеся в природе.

  Все М. и образованные из них сплавы делят на чёрные (к ним относят железо и сплавы на его основе; на их долю приходится около 95% производимой в мире металлопродукции) и цветные, или, точнее, нежелезные (все остальные М. и сплавы). Большое число нежелезных М. и широкий диапазон их свойств не позволяют классифицировать их по какому-либо единому признаку. В технике принята условная классификация, по которой эти М. разделены на несколько групп по различным признакам (физическим и химическим свойствам, характеру залегания в земной коре), специфичным для той или иной группы: лёгкие металлы (например, Al, Mg), тяжёлые М. (Cu, Pb и др.), тугоплавкие металлы (W, Mo и др.), благородные металлы (Au, Pt и др.), рассеянные металлы (Ga, In, TI), редкоземельные М. (Sc, Y, La и лантаноиды , см. Редкоземельные элементы ), радиоактивные металлы (Ra, U и др.). М., которые производят и используют в ограниченных масштабах, называются редкими металлами . К ним относят все рассеянные, редкоземельные и радиоактивные М., большую часть тугоплавких и некоторые лёгкие М.

  Большая способность М. к образованию многочисленных соединений разного типа, к различным фазовым превращениям создаёт благоприятные условия для получения разнообразных сплавов , характеризующихся требуемым сочетанием полезных свойств. Число используемых в технике сплавов превысило уже 10 тыс. Значение сплавов как конструкционных материалов , электротехнических материалов, материалов с особыми физическими свойствами (см. Прецизионные сплавы ) непрерывно возрастает. В то же время в связи с развитием полупроводниковой и ядерной техники расширяется производство ряда особо чистых металлов (чистотой например, 99,9999% и выше).

  Применение того или иного М. (или сплава) в значительной мере определяется практической ценностью его свойств; однако существенное значение имеют и др. обстоятельства, в первую очередь природные запасы М., доступность и рентабельность его добычи. Из наиболее ценных и важных для современной техники М. лишь немногие содержатся в земной коре в больших количествах: Al (8,8%), Fe (4,65%) Mg (2,1%), Ti (0,63%). Природные ресурсы ряда весьма важных М. измеряются сотыми долями процента (например, Cu, Mn, Cr, V, Zr) и даже тысячными долями (например, Zn, Sn, Pb, Ni, Co, Nb). Некоторые ценные М. присутствуют в земной коре в ещё меньших количествах. Так, содержание урана — важнейшего источника ядерной энергии — оценивается в 0,0003%, вольфрама, являющегося основой твёрдых сплавов, — 0,0001% и т.д. Особенно бедна природа благородными и т. н. редкими М.

  Многообразие М. предопределяет большое число способов их получения и обработки (см. Металлургия ). Взаимосвязь состава, строения и свойств металлов и сплавов, а также закономерности их изменения в результате теплового, химического или механического воздействия изучает металловедение . О свойствах, способах получения, масштабах производства и применении отдельных М. см. в статьях, посвященных соответствующим химическим элементам и сплавам на их основе (например, Алюминий , Алюминиевые сплавы , Бериллий , Бериллиевые сплавы и т.д.).

  О применении М. и их сплавов в искусстве см. в статьях Бронза , Железо , Золото , Медь , Олово , Серебро , Сталь , Чугун , Гравирование , Гравюра , Зернь , Ковка , Насечка , Тиснение , Филигрань , Чеканка , Ювелирное искусство .

  И. И. Новиков.

Периодическая система Д. И. Менделеева. Свойства металлов.

Металогика

Метало'гика (от мета... ), часть логики, посвященная изучению метатеоретическими средствами (см. Метатеория ) строения и свойств различных логических теорий. Возникшая на рубеже 19 и 20 вв. в связи с исследованиями оснований дедуктивных наук (прежде всего математики), М. в ходе дальнейшей специализации этих исследований разделилась на синтаксическую и семантическую «ветви». К первой из них, посвященной рассмотрению чисто структурных свойств исчислений, относятся прежде всего теория (формальных) доказательств (или метаматематика ) и теория определимости понятий. Вторая «ветвь» М., распадающаяся на теорию смысла и теорию референции (теорию значения), — это логическая семантика ; уже из основополагающей для неё работы А. Тарского , посвященной исследованию понятия истины (истинности) в формализованных языках , выделилась вскоре самостоятельная теория алгебраического содержания — т. н. моделей теория . К М. относится и интересная проблема соотношения между экстенсиональными и интенсиональными языками, явившаяся отправным пунктом новой дисциплины — прагматики (см. Семиотика ).

  Лит.: Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Карнап Р., Значение и необходимость, пер. с англ., М., 1959; Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960 (введение); Carnap R., The logical syntax of language, N. Y. — L., 1937; Tarski A., Logic, semantics, metamathematics, Oxf., 1956; Martin R., Towards to systematic pragmatics, Amst., 1959.

1 ... 226 227 228 229 230 231 232 233 234 ... 303
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая Советская Энциклопедия (МЕ) - БСЭ БСЭ торрент бесплатно.
Комментарии
Открыть боковую панель