Диалоги (ноябрь 2003 г.) - Александр Гордон
Шрифт:
Интервал:
Закладка:
Ведь, опять-таки, современная физика родилась из эксперимента; а какие были эксперименты: с тележками, с бросанием камней, потом с электромагнитными полями. Все это локальные эксперименты. Человек локален по своей природе, он ограничен во времени и в пространстве. И естественно, что наука, которая выросла из его практической деятельности и является абстракцией этой его деятельности, она неизбежно и является локальной, эта наука. Но какова гарантия, что Мир устроен на основе локального принципа? Ведь гораздо проще, чем выдумывать какие-то уравнения отдельные, какие-то поля, гораздо проще задать единый закон на всем многообразии, на всем пространстве-времени. И тогда естественным языком станут, например, функциональные уравнения, в общем, не связанные с бесконечно малыми изменениями поля. И топологические, конечно, вещи. Они сейчас действительно стали модными в физике, и они, вне сомнения, имеют право на существование, потому что они связаны именно с нелокальностью. Вот вам пример.
Я уже, наверное, к этому не вернусь, поэтому хочу обратить внимание на то, что некоторые «наметки» на нелокальность нашего мира сейчас просматриваются в эксперименте. А именно: есть эксперименты С.Э. Шноля, который обнаружил очень интересные корреляции пространственно удаленных и причинно не связанных событий. Я думаю, Александр, что, может быть, вы его приглашали…
А.Г. Он нам рассказывал об этом.
В.К. Да. Вот поэтому очень даже может быть, что скоро наука просто вынуждена будет искать и внедрять, причем независимо ни от какой философии, а просто с целью лучшего описания природы, совершенно новый язык. И оттуда, конечно, этот сегодняшний язык локальный, язык дифференциальных уравнений, должен следовать. В этом смысле принцип соответствия, конечно, сохранится. Но он и будет совершенно естественно следовать из нелокальной теории, потому что из отображений, например, очень легко получить дифференциалы отображений, и из уравнений функциональных тогда будут следовать, возможно, и обычные, привычные уравнения физики. Так что здесь путь совершенно понятен и естественен.
Но я сейчас поведу речь о другом. О том, что Принцип должен быть, принцип, скорее всего, общий, он должен «кодироваться» в абстрактных, исключительных математических структурах. Известно их не так много. Многие люди, даже просто из моих друзей и знакомых (я знаю таких людей, совершенно «нетривиальных»), думают и пытаются построить конструктивную физику, скажем, на основе свойств целых чисел. Или на основе алгебр логического типа, так называемых «булевых» алгебр.
В этой связи я не могу не процитировать еще одного великого физика, Дж.А. Уилера. В трехтомнике по гравитации этот «матерый», выдающийся ученый позволил себе включить параграф, где он пишет, например, следующее: «Какой-то принцип, единственно верный и единственно возможный, когда он станет нам известен, будет столь очевидным, что не останется сомнений: Вселенная устроена таким-то и таким-то образом и должна быть так устроена, а иначе и быть не может». И дальше, уже в связи с тем, о чем мы говорили: «Реальная предгеометрия реального физического мира тождественна исчислению высказываний». То есть из логики Уилер мечтал получить физику, со всей ее феноменологией, с описанием всего богатства физических взаимодействий, «зоопарка частиц» и так далее. Конечно, это мечта. Я не знаю до сих пор никаких работ, в которых было бы реальное продвижение в этом направлении. Пока это только очень далекая перспектива.
Но есть более близкие вещи. В математике существует несколько структур, их «по пальцам» можно перечесть, которые в принципе известны давно, но их богатство, глубина их внутренних свойств стала понятна совсем недавно и, в частности, в связи с появлением и усовершенствованием компьютеров. В первую очередь здесь можно упомянуть фракталы. У вас была передача прекрасная, я ее как раз смотрел, о фракталах, Малинецкий и Курдюмов, по-моему, выступали. Поэтому я позволю себе просто, не углубляясь, попросить показать рисунки, связанные с фракталами (0А,0В,0С).
Вот такие сложные миры получаются из удивительно «плотной» по информации начальной математической структуры. Квадратичное отображение, когда на «комплексной плоскости» следующее число равно предыдущему в квадрате плюс константа С, при разных С дает совершенно удивительные «миры». Не буду углубляться сейчас в то, как это получается. А вот знаменитые «кардиоды» Мандельброта, это уже множество значений самого параметра С с определенными свойствами. Опять-таки каждому числу соответствует свой «мир», и все эти миры как бы сведены в какую-то универсальную геометрическую и алгебраическую структуру. Причем, во многом вид этой универсальной структуры, множества Мандельброта, не зависит от самого отображения. То есть вы можете взять другое отображение и опять получить ту же самую структуру. Эти структуры «самоподобны». То есть если вы увеличите какой-то участок рисунка, вы там увидите как бы новый мир, но он будет во многом подобен миру на больших масштабах.
Физики, собственно говоря, здесь опять делятся на две части. Ортодоксальные физики просто игнорируют существование таких структур. Слишком многое надо менять, большинство не готово к этому. Люди более гибкие пытаются построить фундаментальную фрактальную физику. Не какие-то приложения, к кластерам звездным или к кристаллам, к береговой линии и так далее, а построить действительно фундаментальную фрактальную физику. Но опять-таки это только первые попытки, это опять-таки дело будущего.
Существуют и некоторые другие структуры, о которых я надеюсь сказать попозже. Теперь же перейду ближе к своим вещам, но перед этим упомяну еще замечательные структуры, открытые нашим российским физиком, Ю.И. Кулаковым из Новосибирска, учеником И.Е. Тамма. В свое время, уже достаточно давно, он предложил получать физические законы из так называемых систем отношений. И только из них! То есть вот это и есть вещи, очень близкие к тем, о чем мы говорили: к логике, к исчислению высказываний. И одна эта исходная посылка позволила ему написать очень красивое и «компактное» уравнение, которое приводит к совершенно нетривиальной математике и, с другой стороны, дает, например, обоснование простых линейных законов, которые мы имеем в общей физике. Например, закон Ньютона очень элегантно формулируется на языке «систем отношений», закон Ома и др.
Другой наш физик, Ю.С. Владимиров, подхватил эти идеи и попытался их реализовать на уровне элементарных частиц, построить на основе «систем отношений» фундаментальную физику. И продвижения здесь есть, очень большие продвижения. Недавно у него вышла монография «Метафизика». Он не побоялся даже использовать такое, совершенно незаслуженно «опошленное», если можно так сказать, слово; он имеет на это право. Там действительно очень большие продвижения.
И, наконец, я подхожу к тому, что же все-таки является основой алгебродинамического подхода: это исключительные алгебры. Давайте перейдем к ним, то есть к математическим основаниям моего подхода.
Что такое исключительная алгебра? Наверное, большинство учило комплексные числа: это пара чисел с законами сложения и вычитания обычными, покомпонентными, и с простым законом умножения, который, в общем-то, просто следует из того, что вы добавляете символ «корень из минус 1», так называемую «мнимую единицу» «I», квадрат которой равен минус единице. Красивейшая вещь. Они соответствуют определенной геометрии: геометрии плоскости. Все знают, что комплексное число можно изобразить на плоскости.
Оказывается, что их немного, таких законов. И если закон умножения комплексных чисел соответствует геометрии двумерного мира плоскости, то возникает вопрос: а может быть, какая-то числовая система такого же типа соответствует нашему трехмерному пространству. А если говорить о теории относительности, которую мы давно уже «приняли на вооружение», то и 4-мерному пространству, так называемому пространству Минковского.
Это старая идея. И реализовал ее, открыл алгебру трехмерного пространства великий физик Уильям Гамильтон. Известна даже дата, когда он это сделал. На мосту в Дублине через Королевский канал имеется табличка, где написано: «здесь 16 октября 1843 года Уильям Гамильтон открыл свою таблицу умножения кватернионов». Гамильтон, который предложил самую элегантную из известных трактовку классической механики, который много сделал в оптике, в частности предложил оптико-механическую аналогию, – он больше всего в своей жизни ценил и дорожил открытием кватернионов. Удивительно. И всю свою оставшуюся жизнь после этого открытия он посвятил разработке этой алгебры.
Дайте, пожалуйста, формулу № 2. Здесь, в отличие от комплексных чисел, имеется не две и даже не три, а четыре базисных единицы: одна действительная и тройка мнимых единиц, как бы три «I»: «I, J, К». Квадрат каждой из них равен минус единице, так же как для комплексных чисел. Но, кроме того, и в этом была вся тонкость, почему эту алгебру не могли открыть раньше, между мнимыми единицами имеется весьма специфическое взаимное умножение: каждая пара перемноженных мнимых единиц приводит в результате к третьей. Самое забавное при этом, что если переставить порядок сомножителей, то результат изменит знак. То есть, например «I*J=K», а «J*I» будет равно уже «-K». Эта таблица оказывается единственной, исключительной во многих отношениях, и была доказана потом теорема, что кроме такой алгебры есть еще только одна подобная восьмимерная алгебра, алгебра октав, но и она в некоторых отношениях уже не столь красива, как алгебра Гамильтона.