- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (АН) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Ю. А. Клячко.
Аналитические счета
Аналити'ческие счета', см. Аналитический учёт.
Аналитические формы
Аналити'ческие фо'рмы в языке, сложные, описательные словосочетания, состоящие из вспомогательного и полнозначного слова и функционирующие в качестве грамматической формы последнего («буду читать» — А. ф. будущего времени глагола «читать», «самый красивый» — А. ф. превосходной степени прилагательного «красивый»; англ. I have seen, франц. J'ai vu, нем. Ich habe gesehen — «видел»). А. ф. имеют то же лексическое значение, что и входящее в них полнозначное слово, либо отличаясь от него дополнительным смысловым оттенком, либо выражая определённые отношения между ним и др. членами предложения. Вспомогательное слово А. ф. не должно присоединять дополнительное лексическое значение к полнозначному слову (словосочетание «начну читать» не принадлежит к А. ф. глагола «читать», поскольку слово «начну» вносит дополнительное значение начала действия). Вспомогательное слово является постоянной, а полнозначное — переменной частью А. ф., что обеспечивает продуктивность А. ф.
А. ф. часто функционируют параллельно с синтетическими формами, образуя эквивалентные грамматические формы («красивее» и «более красивый» — соответственно, синтетические и А. ф. сравнительной степени прилагательного «красивый»). А. ф. слов находятся в регулярном соответствии с другими грамматическими формами этих слов и заполняют определённый пробел в структуре языка.
Иногда к А. ф. относят словосочетания, выражающие грамматические формы (А. ф. падежа: англ. to the father, франц. au pére — «отцу»).
Лит.: Смирницкий А. И., Аналитические формы, «Вопросы языкознания», 1956, N° 2: Гухман М. М., Глагольные аналитические конструкции как особый тип сочетаний частичного или полного слова, в кн.: Вопросы грамматического строя, М., 1955: Аналитические конструкции в языках различных типов, М., 1965.
Аналитические функции
Аналити'ческие фу'нкции, функции, которые могут быть представлены степенными рядами. Исключительная важность класса А. ф. определяется следующим. Во-первых, этот класс достаточно широк; он охватывает большинство функций, встречающихся в основных вопросах математики и её приложений к естествознанию и технике. Аналитическими являются элементарные функции — многочлены, рациональные функции, показательная и логарифмическая, степенная, тригонометрические и обратные тригонометрические, гиперболические и им обратные, алгебраические функции, и специальные функции — эллиптические, цилиндрические и др. Во-вторых, класс А. ф. замкнут относительно основных операций арифметики, алгебры и анализа; применение арифметических действий к функциям этого класса, решение алгебраических уравнений с аналитическими коэффициентами, дифференцирование и интегрирование А. ф. приводят снова к А. ф. Наконец, А. ф. обладают важным свойством единственности; каждая А. ф. образует одно «органически связанное целое», представляет собой «единую» функцию во всей своей естественной области существования. Это свойство, которое в 18 в. считалось неотделимым от самого понятия функции, приобрело принципиальное значение после установления в 1-й половине 19 в. общей точки зрения на функцию как на произвольное соответствие.
Теория А. ф. создана в 19 в., в первую очередь благодаря работам О. Коши, Б. Римана и К. Вейерштрасса. Решающую роль в построении этой теории сыграл «выход в комплексную область» — переход от действительного переменного х к комплексному переменному z = х + iy, которое может меняться в произвольной области комплексной плоскости. Теория А. ф. возникла как теория функций комплексного переменного; в некотором смысле именно аналитические (а не произвольные комплексные функции двух действительных переменных х и y) естественно считать функциями комплексного переменного z. Теория А. ф. составляет основное содержание общей теории функций комплексного переменного. Поэтому часто под теорией функций комплексного переменного понимают именно теорию А. ф.
Существуют различные подходы к понятию аналитичности. В основе одного из них, впервые развитого Коши и далеко продвинутого Риманом, лежит структурное свойство функции — существование производной по комплексному переменному, или комплексная дифференцируемость. Этот подход тесно связан с геометрическими соображениям и. Другой подход, систематически развивавшийся Вейерштрассом, основывается на возможности представления функций степенными рядами; он связан, тем самым, с аналитическим аппаратом, которым может быть изображена функция. Основной факт теории А. ф. заключается в тождественности соответствующих классов функций, рассматриваемых в произвольной области комплексной плоскости.
Приведём точные определения. Всюду в дальнейшем через z обозначается комплексное число х + iy, где x и y — действительные числа. Геометрически число z изображается точкой плоскости с координатами х и y; евклидова плоскость, точки которой отождествляются с комплексными числами, называется комплексной плоскостью. Пусть D — область (открытое связное множество) в комплексной плоскости. Если каждой точке z области D приведено в соответствие некоторое комплексное число w, то говорят, что в области D определена (однозначная) функция f комплексного переменного z, и пишут: w = f(z), z(D. Функция w = f(z) = f(x + iy) комплексного переменного z (D может рассматриваться как комплексная функция двух действительных переменных х и y, определённая в области D. Полагая w = u + iv, где u и v — действительные числа, замечают, что задание такой функции f эквивалентно заданию двух действительных функций j и y двух действительных переменных х и y, определённых в той же области:
u = j(x, y), v = y(x, y), (x, y)ÎD.
Пусть z — фиксированная точка области D. Придадим z произвольное приращение Dz = Dx + iDy (так, чтобы точка z+Dz оставалась в пределах области D) и рассмотрим соответствующее приращение функции f : Df (z) = f (z + (z) — f (z). Если разностное отношение Df (z)/Dz имеет предел при Dz®0, т. е. существует комплексное число А такое, что для любого e > 0 будет ïDf(z)/Dz - Aï < e как только ïDzï < d (d = d(e) > 0), то функция f называется моногенной в точке z, а число А — её производной в этой точке: А = f' (z) = df(z)/dz. Функция, моногенная в каждой точке области D, называется моногенной в области D.
Если функция f моногенна в точке zÎD, то f и соответствующие функции j и y имеют в этой точке частные производные по х и y; при этом ¶f/¶x = ¶y/¶x + i(¶y/¶x), ¶f/¶y = ¶j/¶y + i(¶y/¶y). Производную f’ (z ) можно выразить через частные производные f по х и по у (достаточно вычислить предел отношения Df(z)/Dz двумя разными способами — при Dz = Dx ® 0 и при Dz = iDy ® 0; приравнивая соответствующие выражения, получаем ¶f/¶x = (1/i)¶f/¶y или, что то же самое, ¶f/¶x + i(¶f/¶y) = 0. Переходя к функциям j и y, это равенство можно переписать так: ¶j/¶x = ¶y/¶y, ¶j/¶y = — ¶y/¶x. Если функция f моногенна в области D, то последние соотношения справедливы в каждой точке области D; они называются уравнениями Коши — Римана. Следует отметить, что эти уравнения встречались уже в 18 в. в связи с изучением функций комплексного переменного в трудах Д'Аламбера и Л. Эйлера.
Моногенность функции f эквивалентна её дифференцируемости в смысле комплексного анализа. При этом под дифференцируемостыо f в точке zÎD понимается возможность представления её приращения в виде Df(z) =ADz + a(Dz)Dz, где a(Dz) ® 0 при Dz ® 0; дифференциал df(z) функции f в точке z, равный главной части ADz её приращения Df(z), в этом случае пропорционален dz = Dz и имеет вид f’(z) dz. Полезно сравнить понятия дифференцируемости функции f — в смысле действительного анализа и в смысле комплексного анализа. В первом случае дифференциал df имеет вид (¶f/¶x) dx + (¶f/¶y) dy. Удобно переписать это выражение в комплексной форме. Для этого переходят от независимых переменных x, у к переменным z, , которые формально можно считать новыми независимыми переменными, связанными со старыми соотношениями: z = х + iy, = x - iy (становясь на эту точку зрения, функцию f иногда записывают в виде f(z, ). Выражая dx и dy через dz и d по обычным правилам вычисления дифференциалов, получают df = (¶f/¶z)dz + (¶f/¶)d , где ¶f/¶z = (1/2) (¶f/¶x - i¶f/¶y) и ¶f/¶ = (1/2) (¶f/¶x + i¶f/¶y) (формальные) производные функции f по z и соответственно.

