- Любовные романы
- Фантастика и фэнтези
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Интернет-журнал 'Домашняя лаборатория', 2008 №3 - Журнал «Домашняя лаборатория»
Шрифт:
Интервал:
Закладка:
Воспроизводимый ввод маленьких объемов пробы является важной предпосылкой для количественного анализа и стандартизации отклонений. Важнейшие способы ввода пробы, которые находят применение в различных автоматизированных коммерческих приборах, представлены в табл. 8.
6.3.1. Ввод пробы давлением
Ввод пробы обеспечивается созданием разницы давлений между сосудом для пробы и концом капилляра, при этом давление либо повышается в сосуда для пробы, либо снижается на конце капилляра. Обе эти возможности допускают также простую промывку капилляра свежим буферным раствором. Количество вводимой пробы рассчитывается по соотношению:
Q = Δp∙π∙r4∙ti∙c/8∙η∙L
и зависит только от разницы давлений и времени ввода пробы. При временах ввода порядка нескольких секунд разность давлений лежит в области нескольких миллибар. В коммерческих приборах это наиболее распространенный способ ввода проб.
Проблему при этом методе ввода пробы составляет сжимаемость газа. Схема на рис. 19 поясняет эту проблему. Во-первых, выбранное для ввода давление должно быстро достигаться, во-вторых, падение давления после ввода пробы не должно быть резким. Поэтому полезно использовать в работе интеграл давление-время.
Рис. 19. Кривая давление-время при вводе проб:
а) неконтролируемое повышение давления (например, в результате простого открывайся вентиля давления);
Ь) контролируемое повышение и понижение давления. Затемненная площадь — нормальный интеграл давление-время, заштрихованная площадь — коррекция посредством дополнительного импульса давления.
Относительное стандартное отклонение, по нашим оценкам, лежит в интервале между 2 % и 3 %; применяя внутренний стандарт можно уменьшить эту величину до 1 % и ниже.
Для определения вводимого объема существуют две принципиальные возможности. Во-первых, это удается сделать с помощью расчета, во-вторых, его легко можно контролировать посредством измерения. Расчет вводимого объема базируется на законе Хагена-Пуазейля и сильно зависит от параметров, которые обычно известны. В качестве примера можно назвать вязкость, а также радиус капилляра. Колебание радиуса капилляра только на 1 % вызывает очень большую ошибку в расчетах, поскольку в законе Хагена-Пуаэейля радиус входит в четвертой степени.
Практическое определение осуществляется очень просто измерением проскока: время ввода выбирается так, чтобы зона пробы УФ-активного раствора доходила до детектора. Полученный ступенчатый сигнал анализируется таким образом, что отыскивается точка сигнала на половине высоты, и перпендикуляр на ось времени дает время проскока растворителя. Поскольку в данном случае можно работать с таким же растворителем, который вводится в систему, ошибка, связанная с вязкостью или радиусом капилляра, может быть незначительной. Расчет вводимого объема проводится теперь просто через время. Например, известно, что поток перемещается на 17.7 мм в минуту. При времени ввода 30 секунд (типично для анализа ионов в КЭ) и длине вводимой зоны пробы 8.9 мм это соответствует количеству почти 40 нл (при внутреннем диаметре 75 мкм).
6.3.3. Электрокинетический ввод пробы
При этом способе ввода сосуд с пробой, в который погружен капилляр, соединяется с источником напряжения, и под действием короткого импульса напряжения компоненты пробы перемещаются в разделительный капилляр. Количество введенной пробы при этом способе зависит от величины приложенного напряжения (Uj), времени (tj), в течение которого приложено напряжение, и подвижности компонентов пробы:
где с — концентрация пробы в растворе. Из этой зависимости видна проблема данного способа ввода пробы: компоненты пробы с различной подвижностью будут детектироваться по-разному. Если сравнить площади пиков проб с различными подвижностями при электрокинетическом и гидростатическом способах ввода пробы, то отчетливо видно, что ион, перемещающийся быстрее, при электрокинетическом вводе всегда даст больший пик и будет вводиться в капилляр с некоторой селективностью. Таблица 10 показывает отношение площадей для растворов пробы равной концентрации быстро перемещающегося рубидия и более медленных тестовых ионов.
Если разделить отношение площадей пиков из колонок 2 и 3, то получим "фактор различия" обоих ионов. Он показывает, во сколько раз больше концентрируется более быстрый ион при электрокинетическом вводе пробы. Колонка 4 дает дополнительно отношение подвижностей ионов. Корреляция с колонкой 3 убедительно показывает, что "фактор различия" совпадает с отношением подвижностей. Различная скорость миграции при электрокинетическом вводе проб определяет разную скорость отбора разных ионов.
Электрическое сопротивление раствора пробы (ионная сила) по сравнению с раствором электролита также влияет на воспроизводимость метода. Это явление проще всего может быть показано при непосредственном сравнении обоих способов ввода пробы и представлено на рис. 20.
Рис. 20. Зависимость площади пика от электрического сопротивления раствора пробы при гидростатическом и электрокинетическом способах ввода пробы.
Если вводится раствор ионов калия и лития в чистой воде (сопротивление 18 кОм), то разница между гидростатическим и электрокинетическим вводами пробы наибольшая. Разница будет меньше при увеличении электропроводности раствора пробы. В результате повышенной электропроводности при электрокинетическом вводе будет происходить перенос зарядов и других ионов и будет вводиться меньше ионов пробы.
ТМА — триметиламин, ДЭА — диэтиламин, аpr — аргинин.
Если существует электроосмотический поток, то при небольшом сопротивлении раствора пробы ионы вводятся в капилляр в основном в результате переноса раствора пробы за счет ЭОП, и электрофооретическое перемещение ионов играет только второстепенную роль.
Из рисунка также ясно видно, что этот эффект появляется только у ионов с очень высокой подвижностью. Наклон прямой для электрокинетического ввода калия больше, чем для лития. Причина заключается в большей подвижности калия. В случае гидродинамического ввода наклоном обеих прямых можно пренебречь, поскольку в данном случае вводимое количество пробы не зависит от сопротивления раствора пробы.
Несмотря на эти недостатки, с недавнего времени широко используется электрокинетический ввод пробы. С помощью так называемого "электростэкинга" удается сконцентрировать пробу от 10 до 500 раз, так что порог обнаружения метода вследствие этого в целом может быть снижен. Рис. 21 показывает процесс "электростэкинга" на примере ввода раствора с ионами, которые мигрируют с ЭОП. Подробности оптимизации этой техники даются а разделе "Эффекты обогащения при вводе проб (стэкинг)".
Рис. 21. Ввод раствора пробы с низкой электропроводностью.
А: большой объем пробы впрыскивается гидродинамически; В: молекулы пробы перемещаются к пограничному слою между зоной ввода пробы и разделительным буфером; С: сконцентрированные молекулы пробы перемещаются в разделительный буфер.
Для автоматизированного электрокинетического ввода пробы было установлено относительное стандартное отклонение (ОСО) 4.1 %. В общем, как и во всех методах с проблемами при вводе пробы, например, при капиллярной
