- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Природа боится пустоты - Дмитрий Александрович Фёдоров
Шрифт:
Интервал:
Закладка:
Например, мы точно знаем, что в «Катоптрике» Архимед показал, что для отраженного в зеркале светового луча угол падения равен углу отражения. Этот факт совсем неочевиден, ведь существует множество способов построить путь от источника до глаза наблюдателя. Рассмотрим плоское зеркало, источник света A и глаз B (Архимед бы сказал, что луч зрения идет от глаза к объекту A). Полагаем, что луч света отражается от зеркала в точке O так, что α = β. Допустим, что в действительности луч света движется по какому-либо иному пути, например, отражается от зеркала в точке K, и тогда α’ > β’, то есть угол падения больше угла отражения. Мысленно поместим источник света в точку B, а глаз — в точку A, и получим, что угол падения стал меньше угла отражения, а это противоречит изначальному допущению. Единственным случаем, когда противоречия не возникает, это ситуация когда углы падения и отражения равны.
На самом деле приведенное доказательство не выглядит безупречным. Очевидно, оно исходит из постулата о том, что если пометь местами видимый предмет и глаз, то ход лучей никак не изменится, но это совсем не очевидное допущение, более того — интуитивно хочется предположить как раз обратное. Возможно, что переписчик, не сумел понять настоящее доказательство Архимеда, и привел его в сильно искаженном виде, сохранив лишь общий принцип сведения альтернативных версий к абсурду.
Другой, сохранившийся фрагмент «Катоптрики» выглядит намного убедительнее. В этом отрывке Архимед рассказывает о том, как смог определить угол, который занимает на небосводе солнечный диск. Для этого на длинной горизонтальной линейке Архимед разместил небольшой цилиндрик (на чертеже он обозначен как A) и, дождавшись восхода, когда на Солнце еще можно спокойно смотреть, поместил свой глаз у одного конца линейки, а цилиндрик переместил так, чтобы тот едва-едва начал заслонять Солнце. Если бы человеческий зрачок являлся точкой, что проведя касательные к цилиндру, можно было бы получить угол α, соответствующий искомой величине. Архимед, однако же, справедливо отмечает, что необходимо учесть поправку на размер зрачка, для чего на линейке устанавливается специальная пластинка B, размер которой равен размеру зрачка. Теперь, проведя касательные одновременно к цилиндру A и пластинке B, мы получим угол β, который окажется меньше искомой величины.
В данном случае мы встречаем, пожалуй, первый в истории случай оценки погрешности для экспериментально определяемой величины. Из своих опытов Архимед определил, что угловой размер Солнца составляет от 1/200 до 1/164 прямого угла, то есть от 27’ до 32’55’’. Поскольку истинное значение составляет примерно 30’, то можно лишь поразиться мастерству Архимеда, учитывая, сколь примитивными были его инструменты.
Популярность «Катоптрики» в античности была достаточно велика (это означает, что ее прочитало несколько сотен человек), и, вероятно, именно эта книга послужила источником легенды, о том, что Архимед будто бы сумел уничтожить римский флот при помощи огромных зажигательных зеркал. В реальности едва ли это было возможным даже при самых благоприятных погодных условиях, а данную историю наверняка сочинили намного позже, опираясь на исследования Архимеда о небольших параболических отражателях, с помощью которых удавалось воспламенить сухую ткань или щепки.
Оптические работы Герона Александрийского
В более поздних работах Герона Александрийского говорится, что оптика, как наука подразделяется, на учение о том, как мы видим предметы, учение об отражениях и учение о визировании на местности и земельной съемке. В последнем деле Герон особенно преуспел и даже написал книгу о диоптре — сконструированном им самим геодезическом приборе для измерения и фиксирования горизонтальных и вертикальных углов между различными объектами. Так, например, если требовалось определить расстояние от точки A до недоступного объекта K, то Герон предлагал выбрать доступную точку B на прямой AK, а затем еще две доступные точки C и D, такие, чтобы треугольник KBC получился прямоугольным. Теперь необходимо измерить длины отрезков AD, BC и AB, а затем составить пропорцию
откуда получаем искомое расстояние
Если же требуется определить расстояние между точками N и M, которые невозможно наблюдать одну из другой, то в таком случае Герон предлагает провести серию дополнительных построений, построив на местности ломаную линию, все звенья которой расположены перпендикулярно друг к другу. Измерив затем все прямолинейные участки, можно, хоть это и потребует некоторых вычислений, определить длину отрезка NM.
Диоптра позволяла также определять расстояние между кораблями в море, измерять расстояние деревьев и зданий, вычислять площади различных территорий, в том числе и таких, на которые невозможно зайти, а также вести работы по строительству туннелей, соединяя, например, две заданные точки с противоположной стороны горы.
Если же вернуться непосредственно к оптическим сочинениям Герона, то особый интерес представляет его доказательство того, что исходящие из глаз зрительные лучи движутся с бесконечной скоростью. В самом деле, расстояние до звезд очень велико, но если мы закроем и откроем глаза, то сможем увидеть звезды сразу же, лишь только взглянем на небо. Получается, что зрительные лучи достигли звезд и вернулись обратно за очень малое время. Данный аргумент, к слову, использовался и для опровержения теории зрительных лучей, поскольку возможность столь быстрого движения многим представлялась совершенно невероятной. Схожие сомнения высказывал даже Евклид, который, как мы помним, поддерживал теорию о зрительных лучах.
Закон отражения у Герона
Не менее интересно и то, как Герон в своем трактате «Катоптрика» доказывает закон отражения, опираясь на тезис о том, что Природа не напрягает силы без нужды. Данное утверждение неявно содержит в себе принцип минимизации потенциальной энергии, и в самом общем виде оно формулировалось еще Аристотелем, однако именно Герон (либо же автор источника, из которого Герон переписывал) сумел использовать его для плодотворных научных рассуждений. Так, сразу же оказывается необходимым сделать заключение о прямолинейности

