- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Природа боится пустоты - Дмитрий Александрович Фёдоров
Шрифт:
Интервал:
Закладка:
Разобравшись со сложением движений, автор выдвигает следующий тезис: точка на радиусе вращающейся окружности перемещается тем быстрее, чем дальше она отстоит от центра (имеется в виду линейная, а не угловая скорость). Доказательство данного утверждения оказывается чрезвычайно запутанным и заключается в следующем. Рассмотрим рычаг с центром вращения O и отметим на нем две точки a и b.
При вращении рычага каждая из этих точек получает два движения: естественное, перпендикулярное плечу рычага (обозначения aA и bB), и приобретенное, направленное к центру O, с которым все точки рычага связаны нерасторжимой связью (обозначения aA’ и bB’). Поскольку при повороте все точки рычага описывают дуги окружностей, то делается вывод, что отношение между естественным и приобретенным движением не остается постоянным. Почему так происходит — не объясняется. Зато дается указание на следующий факт: точка a получает большее приобретенное движение, чем точка b. В самом деле, пусть естественные движения этих точек будут равными (aA и bC на чертеже), тогда их приобретенные движения будут соответственно равны aA’ и CC’. Но очевидно, что aA’ > CC’, то есть расположенная дальше от центра O точка b получает меньшее приобретенное движение при таком же естественном. Чтобы пропорция между естественным и приобретенным движением оставалась одинаковой (опять же не объясняется, почему это условие является обязательным) для всех точек рычага оказывается необходимым, чтобы точка b двигалась быстрее точки a, и только положение Oa’b’ обеспечит сохранение пропорциональности движений. При этом легко показать геометрически, что величина движений точки b так относятся к величинам движений точки a, как расстояние Ob к расстоянию Oa. В современном виде мы можем записать полученное соотношение как
Современному читателю, знакомому хотя бы с начатками школьной физики, будет чрезвычайно трудно прочесть данные рассуждения без вопроса: зачем доказывать всё таким сложным и сомнительным способом? Пусть даже результат и является абсолютно верным, но ход рассуждений едва ли кажется убедительным. Если быть честным, то приведенное доказательство вообще ничего не доказывает, а являет собой просто-напросто геометрическое пустословие. Более того, греки умели вычислять длину окружности через радиус, поэтому они могли без особого труда составить приведенную выше пропорцию, исходя из самых элементарных кинематических соображений. Но был выбран иной путь. Конечно, нужно иметь в виду что, сегодня люди узнают о легких способах анализа вращательного движения от учителя физики, однако во времена античности такого источника информации не существовало: привычную для нас механику еще не придумали, а эллины лишь пытались делать робкие шаги в этом направлении. Сведение всей механики к круговому движению образовывало некую общую совокупность всех подходов, требующую при рассмотрении задачи равновесия привлекать достаточно сложные соображения. Фактически, греки пытались применить к проблеме сразу все свои знания о механике, даже если условия задачи этого не требовали. Поскольку Аристотель говорил о естественном и приобретенном движении, то их необходимо отыскивать во всех рассматриваемых процессах.
Так или иначе, но получив требуемое соотношение, автор «Механических проблем» приступает к обоснованию закона рычага, а именно — объясняет, каким образом получается возможным с помощью рычага поднимать малым усилием большие тяжести. Здесь используется один из основных законов Аристотеля о приобретенном движении, который мы можем переформулировать следующим образом: при действии одинаковых сил на различные тела произведения их веса (массы) на их скорость дадут постоянную величину. Теперь рассмотрим весы, на плечах которых расположены грузы массой m и M. Если весы начнут двигаться, то грузы станут перемещаться по кругу со скоростями V и v. Дабы система находилась в равновесии необходимо, чтобы на оба груза действовали одинаковые силы (это неверно, однако греки не знали понятия момента), поэтому можно записать
Поскольку выше уже было показано, что для кругового движения скорость пропорциональна радиусу, то последняя формула может быть преобразована в соотношение
что дает нам абсолютно верный закон рычага. Из полученного соотношения следует, что для равновесия необходимо, чтобы отношения грузов и соответствующих плеч находилось в обратной зависимости. Здесь мы видим фактически уже закон равенства моментов, ведь греки не отличали массу и вес, но последний шаг — формулирование понятия «момента силы» — так и не был сделан.
На первый взгляд может показаться странным, что используя сомнительные или даже вовсе ошибочные положения, греки все же пришли к верному решению, однако нужно помнить, что закон рычага был уже давно известен из практического опыта, а приведенное нами доказательство представляет собой лишь подгонку аристотелевских воззрений под заданный ответ. В результате мы видим своеобразную мешанину взглядов, которую характеризуют в первую очередь неспособность различить многие базовые понятия механики (такие как «сила» и «вес» или «путь» и «скорость»), сведение задачи к круговой геометрической схеме с обязательными отношениями пропорциональности, а также использование одновременно статических, кинематических и динамических подходов. Важно понимать, что подобное усложнение и неясность создавали искусственную видимость наукообразия и дополнительно убеждали в истинности всех рассуждений.
Очень важно не впадать в крайность и не пытаться приложить к греческим выкладкам дополнительные знания из современной науки. В «Механических проблемах» сказано всё, что мог сообщить автор и ничего сверх того. Чересчур увлеченные современные исследователи находили в приведенных соображениях и закон сохранения энергии, и даже принцип виртуальных перемещений, но никто из античных или средневековых мыслителей ничего подобного там почему-то не обнаруживал.
Собственно, сам закон рычага разбирается в первых четырех главах (если не считать введения) «Механических проблем», при этом также определяются условия устойчивого и неустойчивого равновесия: оно зависит от типа закрепления весов —

