Большая Советская Энциклопедия (ПЛ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Лит.: Александров П. С., Введение в общую теорию множеств и функций, ч. 1, М. — Л., 1948.
Плоцк
Плоцк (Płock), город в Польше, на р. Висла, в Варшавском воеводстве. 81,5 тыс. жителей (1973). Центр нефтепереработки и нефтехимии (см. Плоцкий нефтеперегонный и нефтехимический комбинат). Машиностроение (завод комбайнов и др. с.-х. машин, судостроительная верфь), пищевая, деревообрабатывающая промышленность.
Плоцкий нефтеперегонный и нефтехимический комбинат
Пло'цкий нефтеперего'нный и нефтехими'ческий комбина'т, крупное предприятие в Польше (около 80% переработки нефти в стране). Расположен в г. Плоцк на трассе нефтепровода «Дружба». Наряду с комбинатами «Освенцим», «Тарнув» и «Кендзежин» обеспечивает страну продуктами основного органического синтеза, производит сырьё и полупродукты для выпуска пластмасс, синтетических волокон, каучуков. Строительство начато в 1960 при технической помощи СССР. Построены (1974) 3 установки по переработке нефти общей мощностью 9 млн. т в год, 4 линии по риформингу бензина и линия каталитического крекинга. Работают установки по производству бутадиена (75 тыс. т в год), этиленгликоля (30 тыс. т), окиси этилена, полиэтилена (30 тыс. т), полипропилена (30 тыс. т), фенола (около 27 тыс. т), ацетона (18 тыс. т в год).
Площадей закон
Площаде'й зако'н, закон движения материальной точки (или центра масс тела) под действием центральной силы, согласно которому: а) траекторией точки является плоская кривая, лежащая в плоскости, проходящей через центр силы; б) площадь, описываемая радиусом-вектором точки, проведённым из центра силы, растет пропорционально времени, т. е. точка движется с постоянной секторной скоростью. П. з. открыт И. Кеплером для движения планет вокруг Солнца и опубликован в 1609 (см. Кеплера законы), а для общего случая доказан И. Ньютоном (1687).
Площадной театр
Площадно'й теа'тр, термин, применяемый к различным видам народных театральных представлений, происходивших на площадях и улицах под открытым небом (например, средневековая мистерия, фарс, итальянская комедия дель арте, русские скоморохи и т. д.).
Площадь (архитект.)
Пло'щадь, открытое, архитектурно организованное, обрамленное какими-либо зданиями, сооружениями или зелёными насаждениями пространство, входящее в систему других городских пространств. Предшественниками городских П. были парадные дворы дворцовых и храмовых комплексов Крита, Египта, Вавилонии, Ассирии. Их прямоугольный план и периметрическую застройку унаследовали древнегреческие агоры и древнеримские форумы. Столь же замкнутый характер (при почти всегда нерегулярном плане) имели П. европейских городов 12—14 вв.; главные П. были торговые П. В эпоху Возрождения создавались обычно П. с очертаниями в виде правильной геометрической фигуры (прямоугольник, трапеция); большое значение приобрели П. для гражданских собраний со зданием городского управления и лоджией для заседаний патрициата. Барокко вводит в практику градостроительства круглые, многоугольные и сложных очертаний П.
Большую общественную и градостроительную роль играли кремлёвские, торговые, соборные П. в русских средневековых городах. В 18 в. получили широкое распространение П. с открытой пространственной композицией. Выдающиеся образцы П. различного назначения были созданы архитекторами русского классицизма в последней трети 18 — 1-й трети 19 вв.
В современном градостроительстве городские П. делятся на два типа: транспортные и пешеходные. Транспортные П. выполняют функции узлов движения городского транспорта; П. с большой интенсивностью движения иногда сооружают в нескольких ярусах (на поверхности земли, подземные, надземные) для развязки движения транспорта в разных уровнях. Транспортные П. часто имеют конкретное специализированное назначение: например, вокзальные П. (на которых должны быть разделены потоки пассажиров, направляющихся на посадку и прибывающих), П. с обширными стоянками автомобилей перед крупными заводами, стадионами, зрелищными и выставочными сооружениями (на таких П. должны быть разделены потоки людей, направляющихся на работу или в зрелищные учреждения, и потоки людей, возвращающихся обратно). П., предназначенные преимущественно для движения пешеходов, также могут иметь специализированное назначение: главные П. — парадный и представительный центр города, театральные, торговые, мемориальные (в честь больших исторических событий, выдающихся государственных деятелей, учёных, мастеров искусства). Такие П., в композицию которых зачастую включаются произведения монументальной скульптуры и живописи, иногда являются выдающимися архитектурными ансамблями и в значительной мере определяют облик населённых мест. Главные П. или системы главных П., являющиеся ядром центра города, обычно имеют большие размеры и наиболее впечатляющую, монументальную застройку (например, здания общегосударственных и городских учреждений); здесь проводятся парады, праздничные демонстрации, митинги, народные гуляния. В современном градостроительстве вблизи парадных, главных П., на которых размещены здания, привлекающие значительное число работающих, зрителей, посетителей и пр., размещают специальные транспортные П. для временной стоянки автомобилей. П. различного назначения могут иметь озеленение в центральной части (преимущественно партерное; см. Партер) или по периметру, либо смешанное. В садово-парковых П. партерная часть обычно сочетается с деревьями и кустарниками, кронам которых стрижкой придают определённую геометрическую форму, или с естественными куртинами зелёных массивов, обрамляющих П. См. также статьи Градостроительство, Дворцовая площадь, Искусств площадь, Красная площадь, Марсово поле, Островского площадь.
Лит.: Брикман А. Э., Площадь и монумент как проблема художественной формы, М., 1935; Бунин А. В., История градостроительного искусства, т. 1, М., 1953; Баранов Н. В., Композиция центра города, [М., 1964]; Основы советского градостроительства, т. 2, 4, М., 1967—69.
Н. В. Баранов.
Н. де Шатийон. Королевская площадь (ныне площадь Вогезов) в Париже. 1606—2 (фрагмент из плана Тюрго. 1734—39). Обстроена зданиями с одинаковыми фасадами. В центре монумент Людовика XIII.
Планы площадей в городах Западной Европы в 16—19 вв. 4. Пьяцца дель Пополо в Риме: 1—1 — улица Виа дель Корсо (восходит к античному периоду); 2—2 — улица Виа дель Бабуино (проложена в 1534—49); 3—3 — улица Виа ди Рипетта (пробита в 1513—21); 4 — обелиск (1589); 5 — церковь Санта-Мария деи Мираколи (1662); 6 — церковь Санта—Мария ин Монте Санто (1662); 7 — рампы (1816—20); 8 — терраса Пинчо (1816—20). 5. Королевская площадь (ныне площадь Биржи) в Бордо. 1728. Архитекторы Ж. Габриель и Ж. А. Габриель (1 — набережная; 2 — монумент Людовика XV)
Ансамбль площади Островского и улицы зодчего Росси в Ленинграде. 1816—34. Архитектор К. И. Росси. План.
Площадь св. Петра в Риме. 1657—63. Архитектор Л. Бернини. План.
Планы площадей в городах Западной Европы в 16—19 вв. 1. Пьяцца делла Синьория во Флоренции: а — Палаццо делла Синьория (начато в 1298); б — улица Уффици (1560—1585); в — Лоджия деи Ланци (около 1376—80); г — статуя «Давид» (1501—04); д — фонтан Нептуна (1575). 2. Пьяцца Сан—Марко и Пьяццетта в Венеции: а — собор Сан—Марко (829—832, перестроен в 1073—95); б — Дворец дожей (строился с 9 в.); в — Старая библиотека Сан—Марко (1536—54, окончена в 1583); г — кампанила (888—1517); д — Старые Прокурации (1480 и 1511—14); е — Новые Прокурации (1584—1611 и 1640); ж — колонны из гранитных монолитов, привезённых в 1127 из Египта. 3. Пьяцца Санта—Мария делла Паче в Риме. Середина 17 в. Архитектор Пьетро да Кортона (1 — церковь Санта—Мария делла Паче, 1480-е гг.).
Площадь (в геометрии)
Пло'щадь, одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины.
Вычисление П. было уже в древности одной из важнейших задач практической геометрии (разбивка земельных участков). За несколько столетий до нашей эры греческие учёные располагали точными правилами вычисления П., которые в «Началах» Евклида облечены в форму теорем. При этом П. многоугольников определялись теми же приёмами разложения и дополнения фигур, какие сохранились в школьном преподавании. Для вычисления П. фигур с криволинейным контуром применялся предельный переход в форме исчерпывания метода.