- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская энциклопедия (Но) - БСЭ
Шрифт:
Интервал:
Закладка:
Концепция Н. а. специально приспособлена для реализации алгоритмов, действующих над словами в тех или иных алфавитах. При этом под алфавитом в математике понимается любой конечный набор четко отличимых друг от друга графических символов (букв), а под словом в данном алфавите — произвольная конечная цепочка букв этого алфавита. Цепочка, вовсе не содержащая букв, также считается словом в данном алфавите (пустое слово). Например, цепочки «ииаам», «книга», «гамма» являются словами в русском алфавите, а также в шестибуквенном алфавите {к, н, и, г, а, м}. Элементарным актом преобразования слов в алгоритмических процессах, задаваемых Н. а., является т. н. операция «подстановки вместо первого вхождения». Пусть Р, Q, R — слова в некотором алфавите. Результатом подстановки Q вместо первого вхождения Р в R называется слово Ʃ (R, Р, Q), получаемое следующим образом. Если Р входит в R, т. е. R представимо в виде S1PS2, то среди таких представлений отыскивается представление с наиболее коротким словом S1 и полагается Ʃ (R, Р, Q) = S1QS2. Если же Р не входит в R, то Ʃ (R, Р, Q) = R. Так, Ʃ (гамма, а, е) = гемма.
Для задания Н. а. необходимо фиксировать некоторый алфавит А, не содержащий букв «→» и «·», и упорядоченный список слов вида Р → Q (простая формула подстановки) или Р → Q (заключит. формула подстановки), где Р и Q — слова в А. Формулы подстановок принято записывать друг под другом в порядке следования, объединяя их слева фигурной скобкой. Получающаяся фигура называется схемой Н. а. Исходными данными и результатами работы Н. а. являются слова в А (сам Н. а. называется Н. а. в алфавите А). Процесс применения к слову R Н. а. со схемой вида
где δi (1 ≤ i ≤n) означает «→» или «→», разворачивается следующим образом. Отыскивается наименьшее i, при котором Pi входит в R. Если все Pi не входят в R, то работа заканчивается и её результатом считается R. Если требуемое i найдено, то переходят к слову Ʃ (R, Pi, Qi). При этом в случае, если использованная формула подстановки PidiQi была заключительной (di = ®), работа заканчивается и результатом считается Ʃ (R, Pi, Qi). Если же формула PidiQi — простая, то описанная процедура повторяется с заменой R на Ʃ (R, Ri, Qi).
Пример. Натуральные числа можно рассматривать как слова в алфавите {О, 1} вида 0, 01, 01l…. Н. а. в этом алфавите со схемами {0 →· 01 и {1→ переводят каждое натуральное число п соответственно в n + 1 и в 0.
Множество всех Н. а. замкнуто относительно известных способов комбинирования алгоритмов. Например, по любым двум Н. а. и можно построить Н. а., являющийся композицией и, т. е. реализующий следующий интуитивный алгоритм: «сначала выполнить алгоритм, затем к результату применять».
Соотношение между интуитивными алгоритмами и Н. а. описывается выдвинутым А. А. Марковым принципом нормализации: всякий алгоритм, перерабатывающий слова в данном алфавите А в слова в этом же алфавите, может быть реализован посредством Н. а. в некотором расширении А. [Легко указать очень простые алгоритмы в А, не реализуемые Н. а. в A; с другой стороны, всегда можно ограничиться двухбуквенным (и даже однобуквенным) расширением A.] Принцип нормализации эквивалентен тезису Чёрча и, аналогично последнему, не может быть доказан из-за неточности интуитивной концепции алгоритма.
Лит.: Марков А. А., Теория алгорифмов, М. — Л., 1954 (Тр. Математического института АН СССР, т. 42); Мендельсон Э., Введение в математическую логику, пер. с англ., М., 1971.
Б. А. Кушнер.
Нормальный астрограф
Нормальный астрограф, см. в ст. Астрограф.
Нормальный делитель
Нормальный делитель, инвариантная подгруппа, одно из основных понятий теории групп, введённое Э. Галуа. Н. д. группы G — подгруппа Н, для которой gH = Hg при любом выборе элемента g группы G.
Нормальный потенциал
Нормальный потенциал, стандартный потенциал, физико-химическая величина, условно характеризующая равновесную разность потенциалов между электродом и раствором в том случае, когда вещества, участвующие в электродной реакции, находятся в стандартном состоянии, т. е. их активности (активные концентрации) равны 1. Поскольку фактическая разность потенциалов электрода и раствора недоступна измерению, пользуются величинами, характеризующими потенциалы различных электродов относительно некоторого электрода сравнения. Обычно электродом сравнения служит нормальный водородный электрод (Н. В. Э.), потенциал которого принимается равным нулю при любой температуре. Потенциал электрода, заряжающегося отрицательно относительно Н. В. Э., имеет знак минус, заряжающегося положительно — знак плюс. Совокупность Н. п. реакций разряда-ионизации металлов и водорода, расположенных в порядке их возрастания, называется рядом напряжений. Элементы с менее положительными Н. п. вытесняют элементы с более положительными Н. п. из раствора, содержащего их катионы. Н. п. вычисляют из результатов измерений эдс гальванических элементов, а также из стандартных значений изменения гиббсовой энергии (свободной энергии) DG° при реакции. Величины Н. п. могут быть использованы для вычислений ΔG° и констант равновесия химических реакций. Такие вычисления необходимы для оценки возможности протекания химических реакций и для термодинамических расчётов (см. Термодинамика химическая).
Лит.: Киреев В. А., Краткий курс физической химии, М., 1963, гл. XIII, § 175; Справочник химика, т. 3, М. — Л., 1965; Перельман В. И., Краткий справочник химика, 6 изд., М., 1963; Гороновский И. Т., Назаренко Ю. П., Некряч Е. Ф., Краткий справочник по химии, 3 изд., К., 1965.
Нормальный тон
Нормальный тон, основной тон музыкальной настройки. За Н. т. во всех странах принят звук «ля» первой октавы (а1) с частотой 440 гц. Воспроизводится он эталонным камертоном. По Н. т. устанавливают музыкальный строй инструментов.
Нормальный элемент
Нормальный элемент, гальванический элемент, значение эдс которого весьма стабильно во времени и воспроизводимо от экземпляра к экземпляру. Различают насыщенные и ненасыщенные (в зависимости от концентрации электролита) Н. э. Наилучшей стабильностью и воспроизводимостью обладают образцовые насыщенные Н. э. Вестона (рис.). Ненасыщенные Н. э. Вестона отличаются от насыщенных тем, что их электролит — водный раствор CdSO4 — при температурах свыше 4 °C не содержит кристаллов 3 CdSO4 ·8H2O. Диапазон значений эдс при 20 °C у насыщенных Н. э. Вестона 1,01850—1,01870 в с точностью до 10-5; у ненасыщенных Н. э. 1,0186—1,0194 в с точностью до 10-4. Действительное значение эдс насыщенного Н. э. при температуре t, отличной от 20 °C, определяют по формуле:
Et = E20 — 0,00004 (t — 20) — 0,000001(t — 20)2в,
где E20 — эдс Н. э. при 20 °C. Для ненасыщенных Н. э. изменение эдс с темпрой обычно не учитывается.
В Н. э. Кларка при таком же, как у Н. э. Вестона, положительном электроде отрицательным электродом служит 10 % — я амальгама цинка, а электролитом — насыщенный раствор ZnSO4 с избытком кристаллов ZnSO4 · 7H2O. В интервале температур от 0 до 30 °C их эдс 1,432 в. В СССР Н. э. Кларка практически не применяются.
Насыщенные Н. э. используют в качестве образцовых мер эдс при точных электрических измерениях; они чувствительны к тряске и опрокидыванию. Ненасыщенные Н. э. используют как источники опорных эдс в промышленных и переносных электроизмерительных приборах; они значительно более устойчивы к механическим воздействиям, чем насыщенные Н. э.

